Maharashtra Board Textbook Solutions for Standard Ten

Chapter 2 – Pythagoras Theorem

Theorems to study for the Chapter

Practice set 2.1

1. Identify, with reason, which of the following are Pythagorean triplets.

(i) (3, 5, 4) 

Solution:

5² = 25 …(i)

 

3² + 4² = 9 + 16

∴ 3² + 4² = 25 …(ii)

 

From (i) and (ii),

5² = 3² + 4²

 

∴ 3, 5, 4 is a Pythagorean triplet.

 

(ii) (4, 9, 12) 

Solution:

12² = 144 …(i)

 

4² + 9² = 16 + 81

∴ 4² + 9² = 97 …(ii)

 

From (i) and (ii),

12² ≠ 4² + 9²

 

∴ 4, 9, 12 is not a Pythagorean triplet.

 

(iii) (5, 12, 13)

Solution:

13² = 169 …(i)

 

5² + 12² = 25 + 144

∴ 5² + 12² = 169 …(ii)

 

From (i) and (ii),

13² = 5² + 12² 

 

∴ 5, 12, 13 is a Pythagorean triplet.

 

(iv) (24, 70, 74) 

Solution:

74² = 5476 …(i)

 

24² + 70² = 576 + 4900

∴ 24² + 70² = 5476 …(ii)

 

From (i) and (ii),

74² = 24² + 70² 

 

∴ 24, 70, 74 is a Pythagorean triplet.

 

(v) (10, 24, 27) 

Solution:

27² = 729 …(i)

 

10² + 24² = 100 + 576

∴ 10² + 24² = 676 …(ii)

 

From (i) and (ii),

27² ≠ 10² + 24²

 

∴ 10, 24, 27 is not a Pythagorean triplet.

 

(vi) (11, 60, 61)

Solution:

61² = 3721 …(i)

 

60² + 11² = 3600 + 121

∴ 60² + 11² = 3721 …(ii)

 

From (i) and (ii),

61² = 60² + 11²

 

∴ 11, 60, 61 is a Pythagorean triplet.

2. In figure 2.17, ∠MNP = 90°, seg NQ ⊥ seg MP, MQ = 9, QP = 4, find NQ.

IMG 20230809 172531 Chapter 2 – Pythagoras Theorem

Given: 

In ∆MNP, 

∠MNP = 90⁰

seg NQ ⊥ seg MP

MQ = 9 

QP = 4

 

To find:

NQ.

 

Solution:

In ∆MNP, 

∠MNP = 90⁰…[Given]

and seg NQ ⊥ hypotenuse MP …[Given]

 

∴ NQ² = MQ × PQ …[By the Theorem of Geometric mean]

∴ NQ² = 9 × 4

∴ NQ² = 36

∴ \(\small \sqrt {NQ²}\) = \(\small \sqrt {36}\)

∴ NQ = 6 units

 

Ans: NQ is 6 units. 

3. In figure 2.18, ∠QPR = 90°, seg PM ⊥ seg QR and Q – M – R, PM = 10, QM = 8, find QR.

IMG 20230809 172548 Chapter 2 – Pythagoras Theorem

Given:

In ∆QPR, 

∠QPR = 90⁰ 

seg PM ⊥ seg QR

Q – M – R

PM = 10

QM = 8

 

To find: 

QR

 

Solution:

In ∆QPR, 

∠QPR = 90⁰ …[Given]

and seg PM ⊥ hypotenuse QR …[Given]

 

∴ PM² = QM × RM …[By the Theorem of Geometric mean]

∴ 10² = 8 × RM

∴ RM = \(\large \frac {100}{8}\)

∴ RM = 12.5 units

 

Now,

QR = QM + RM …[Q – M – R]

∴ QR = 8 + 12.5

∴ QR = 20.5 units

 

Ans: QR is 20.5 units. 

4. See figure 2.19. Find RP and PS using the information given in ∆PSR.

IMG 20230809 172640 Chapter 2 – Pythagoras Theorem

Given:

In ∆PSR,

∠S = 90⁰

∠P = 30⁰ 

SR = 6 units

 

To find:

RP and PS

 

Solution:

In ∆PSR,

∠R = 180 – (90 + 30) …[Sum of all angles of a triangle is 180⁰]

∴ ∠R = 180 – (90 + 30)

∴ ∠R = 180 – 120

∴ ∠R = 60⁰

 

∴ ∆PSR is 30⁰ – 60⁰ – 90⁰ triangle

 

By 30⁰ – 60⁰ – 90⁰ triangle theorem,

RS = \(\large \frac {1}{2}\) × PR …[side opposite to 30⁰]

∴ 6 = \(\large \frac {1}{2}\) × PR

∴ PR = 12 units

 

PS = \( \frac {\large \sqrt {3}}{\large 2}\) × PR …[side opposite to 60⁰]

∴ PS = \( \frac {\small \sqrt {3}}{\large 2}\) × 12 

∴ PS = 6\(\small \sqrt {3}\) units

 

Ans: PR is 12 units and PS = 6\(\small \sqrt {3}\) units. 

5. For finding AB and BC with the help of information given in figure 2.20, complete the following activity.

IMG 20230809 172708 Chapter 2 – Pythagoras Theorem

Solution:

AB = BC …(□)

∴ ∠BAC = □

∴  AB = BC = □ AC

∴  AB = □ \( \small\sqrt {8}\)

∴  AB = □ 2 \( \small \sqrt {2}\)

∴  AB = □

 

Solution:

AB = BC …(Side opposite to congruent angle)

∴ ∠BAC = 45⁰

∴  AB = BC = \(\frac{\large 1}{\large \sqrt {2}}\) × AC

∴  AB = \(\frac{\large 1}{\large \sqrt {2}}\) × \( \small \sqrt {8}\)

∴  AB = \(\frac{\large 1}{\large \sqrt {2}}\) × 2 \(\small \sqrt {2}\)

∴  AB = 2 units

6. Find the side and perimeter of a square whose diagonal is 10 cm.

IMG 20230809 174216 Chapter 2 – Pythagoras Theorem

Given: 

□PQRS is a square

PR = 10 cm

 

To find:

Side PQ and perimeter of □PQRS

 

Solution:

PQRS is a square …[Given]

∴ PQ = QR …(i) [Sides of a square]

 

In ∆PQR, 

∠Q = 90⁰…[Each angle of a square is 90⁰]

∴ PR² = PQ² + QR² …[By Pythagoras theorem]

∴ 10² = PQ² + PQ²…[From (i)]

∴ 2PQ² = 100

∴ PQ² = \(\large \frac {100}{2}\)

∴ PQ² = 50

∴ \(\small \sqrt {PQ²}\) = \(\small \sqrt {50}\)

∴ PQ = 5\(\small \sqrt {2}\) cm

 

Now,

Perimeter of □PQRS = 4 × side

∴ Perimeter of □PQRS = 4 × PQ

∴ Perimeter of □PQRS = 4 × 5\(\small \sqrt {2}\)

∴ Perimeter of □PQRS = 20\(\small \sqrt {2}\) cm

 

Ans: Perimeter of □PQRS is 20\(\small \sqrt {2}\) cm. 

7. In figure 2.21, ∠DFE = 90°, FG ⊥ ED, If GD = 8, FG = 12, find
(1) EG
(2) FD and
(3) EF

IMG 20230809 172725 Chapter 2 – Pythagoras Theorem

Given:

In ∆DFE, 

∠DFE = 90°

FG ⊥ ED

GD = 8

FG = 12

 

To find:

EG, FD and EF

 

Solution:

(i) For EG:

In ∆DFE, 

∠DFE = 90⁰…[Given]

and seg FG ⊥ hypotenuse DE …[Given]

 

∴ FG² = DG × EG …[By the Theorem of Geometric mean]

∴ 12² = 8 × EG

∴ EG = \(\large \frac {144}{8}\)

∴ EG = 18 units …(i)

 

(ii) For FD:

In ∆FGD, 

∠FGD = 90⁰ …[Given] 

∴ FD² = FG² + GD² …[By Pythagoras theorem]

 

∴ FD² = 12² + 8²

∴ FD² = 144 + 64

∴ FD² = 208

∴ \(\small \sqrt {FD²}\) = \(\small \sqrt {208}\) …[Taking square roots]

∴ FD = 4\(\small \sqrt {13}\) units

 

(iii) For EF:

In ∆FGE

m∠FGE = 90⁰ …[Given]

∴ EF² = EG² + FG² …[By Pythagoras theorem]

∴ EF² = 18² + 12² …[From (i)]

∴ EF² = 324 + 144

∴ EF² = 468

∴ \(\small \sqrt {EF²}\) = \(\small \sqrt {468}\) …[Taking square roots]

∴ EF = 6\(\small \sqrt {13}\) units

 

Ans: EG is 18 units, FD is 4\(\small \sqrt {13}\) units, and EF is 6\(\small \sqrt {13}\).

8. Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.

IMG 20230809 174418 Chapter 2 – Pythagoras Theorem

Given:

In □ABCD,

AB = 35 cm

BC = 12 cm

 

To find:

diagonal AC

 

Solution:

In ∆ABC, 

∠ABC = 90⁰…[Each angle of a rectangle is 90⁰]

∴ AC² = AB² + BC² …[By Pythagoras theorem]

∴ AC² = 35² + 12²

∴ AC² = 1225 + 144

∴ AC² = 1369

∴ \(\small \sqrt {AC²}\) = \(\small \sqrt {1369}\) …[Taking square roots]

∴ AC = 37 cm 

 

Ans: Length of the diagonal of the rectangle is 37 cm. 

9. In the figure 2.22, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ² = 4PM² – 3PR²

IMG 20230809 172738 Chapter 2 – Pythagoras Theorem

Given:

In ∆PRQ, 

M is the midpoint of QR

∠PRQ = 90°

 

To prove:

PQ² = 4PM² – 3PR²

 

Solution:

In ∆PRQ, 

∠PRQ = 90⁰ …[Given]

 

∴ PQ² = PR² + QR² …(i) [By Pythagoras theorem]

But, QR = 2RM …(ii) [M is the midpoint of seg QR]

∴ PQ² = PR² + (2 RM)² …[From (i) and (ii)]

∴ PQ² = PR² + 4 RM² …(iii)

 

In ∆PRM, 

∠PRM = 90⁰

∴ PM² = PR² + RM² …[By Pythagoras theorem]

∴ RM² = PM² – PR² …(iv)

∴ PQ² = PR² + 4 (PM² – PR²) …[From (iii) and (iv)]

∴ PQ² = PR² + 4 PM² – 4 PR²

∴ PQ² = 4 PM² – 3 PR²

 

Hence proved.

10. Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street, its top touches the window of the other building at a height of 4.2 m. Find the width of the street

IMG 20230809 175901 Chapter 2 – Pythagoras Theorem

Given:

Let,

RD represents the width of the street.

BD represents the first building.

AR represents the second building

CA and CB are two different positions of the same ladder from point C.

∴ AR = 4.2 m

BD = 4 m

AC = BC = 5.8 m

 

To find:

RD

 

Solution:

In ∆ARC

∠R = 90⁰ …[Given]

∴ AC² = AR² + CR² …[By Pythagoras theorem]

∴ (5.8)² = (4.2)² + CR²

∴ CR² = 33.64 – 17.64

∴ CR² = 16

∴ \(\small \sqrt {CR²}\) = \(\small \sqrt {16}\) …[Taking square roots]

∴ CR = 4 m 

 

In ∆BDC,

∠D = 90⁰ …[Given]

∴ BC² = CD² + BD² …[By Pythagoras theorem]

∴ 5.8² = CD² + 4²

∴ CD² = 33.64 – 16

∴ CD² = 17.64

∴ \(\small \sqrt {CD²}\) = \(\small \sqrt {17.64}\) …[Taking square roots]

∴ CD = 4.2 m

 

Now,

RD = RC + CD …[R – C – D]

∴ RD = 4 + 4.2

∴ RD = 8.2 m

Ans: Width of the street is 8.2 m. 

Practice set 2.2

1. In ∆PQR, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS =13, find QR.

IMG 20230809 181820 Chapter 2 – Pythagoras Theorem

Given:

In ∆PQR, 

QS = SR

PQ = 11

PR = 17

PS =13

 

To find:

QR

 

Solution:

In ∆PQR, 

PS is the median …[∵ S is the midpoint of QR]

∴ PQ² + PR² = 2PS² + 2QS² …[By Apollonius theorem]

∴ 11² + 17² = 2 × 13² + 2 × QS²

∴ 121 + 289 = 2 (169 + QS²)

∴ \(\large \frac {410}{2}\) = 169 + QS²

∴ 205 = 169 + QS²

∴ QS² = 205 – 169

∴ QS² = 36

∴ \(\small \sqrt{QS}\)² = \(\small \sqrt{36}\) …[Taking square roots]

∴ QS = 6 units 

 

Now,

QR = 2 QS …[∵ S is the midpoint of QR]

∴ QR = 2 × 6

∴ QR = 12 units

 

Ans: QR is 12 units. 

2. In ∆ABC, AB = 10, AC = 7, BC = 9 then find the length of the median drawn from point C to side AB.

IMG 20230809 182620 Chapter 2 – Pythagoras Theorem

Given: 

In ∆ABC,

seg CM is a median

AB = 10

AC = 7

BC = 9

 

To find:

CM

 

Solution:

In ∆ABC,

BM = \(\large \frac {1}{2}\) × AB …[∵ M is the midpoint of AB]

∴ BM = \(\large \frac {1}{2}\) × 10

∴ BM = 5 units …(i)

 

CM is the median …[Given]

∴ AC² + BC² = 2CM² + 2BM² …[By Apollonius theorem]

∴ 7² + 9² = 2CM² + 2 × 5²

∴ 49 + 81 = 2(CM² + 25)

∴ \(\large \frac {130}{2}\) = CM² + 25

∴ 65 = CM² + 25

∴ CM² = 65 – 25

∴ CM² = 40

∴ \(\small \sqrt{CM}\)² = \(\small \sqrt{40}\) …[Taking square roots]

∴ CM = 2\(\small \sqrt{10}\) units

 

Ans: CM is 2\(\small \sqrt{10}\) units

3. In the figure 2.28 seg PS is the median of ∆PQR and PT ⊥ QR. Prove that,

(i) PR² = PS² + QR × ST + \(\large (\frac {QR}{2})\)²

(ii) PQ² = PS² – QR × ST + \(\large (\frac {QR}{2})\)²

IMG 20230809 183009 Chapter 2 – Pythagoras Theorem

Given: 

In ∆PQR,

seg PS is the median

PT ⊥ QR

 

To prove:

(i) PR² = PS² + QR × ST + \(\large (\frac {QR}{2})\)²

(ii) PQ² = PS² – QR × ST + \(\large (\frac {QR}{2})\)²

 

Proof:

In ∆PTS,

QS = RS = \(\large \frac {QR}{2}\) …(i) [∵ S is the midpoint of seg QR]

 

∠PTS = 90⁰ …[Given]

∴ PS² = PT² + ST²…[By Pythagoras theorem]

∴ PT² = PS² – ST² …(ii) 

 

(i) In ∆PTR, 

∠PTR = 90⁰ …[Given]

∴ PR² = PT² + TR² …[By Pythagoras theorem]

∴ PR² = PS² – ST² + (RS + ST)² …[From (ii), R – S – T]

∴ PR² = PS² – ST² + RS² + 2 × RS × ST + ST² …[∵ (a + b)² = a² + 2ab + b²]

∴ PR² = PS² + 2RS × ST + RS²

∴ PR² = PS² + 2 × \(\large \frac {QR}{2}\) × ST + \(\large (\frac {QR}{2})\)² …[From (i)]

∴ PR = PS + QR × ST \(\large (\frac {QR}{2})\)²

 

Hence proved. 

 

(ii) In ∆PTQ,

∠PTQ = 90° …[Given]

∴ PQ² = PT² + QT² …[By Pythagoras theorem]

∴ PQ² = PS² – ST² + (QS – ST)²…[From (ii), Q – T – S]

∴ PQ² = PS² – ST² + QS² – ² QS × ST + ST² …[∵ (a + b)² = a² + 2ab + b²]

∴ PQ² = PS² – 2QS × ST + QS²

∴ PQ² = PS² – 2 × \(\large \frac {QR}{2}\) × ST + \(\large (\frac {QR}{2})\)² …[From (i)]

∴ PQ² = PS² – QR × ST + \(\large (\frac {QR}{2})\)² 

 

Hence proved.

4. In ∆ABC, point M is the midpoint of side BC. If AB² + AC² = 290 cm², AM = 8 cm, find BC.

IMG 20230809 184521 Chapter 2 – Pythagoras Theorem

Given:

In ∆ABC,

BM = MC

AB² + AC² = 290 cm²

AM = 8 cm

 

To find:

BC

 

Solution:

In ∆ABC, 

seg AM is median …[Given]

 

∴ AB² + AC² = 2AM² + 2BM² …[By Apollonius theorem]

∴ 290 = 2 × 8² + 2 × BM²

∴ 290 = 2 (8² + BM²)

∴ \(\large \frac {290}{2}\) = 64 + BM²

∴ 145 = 64 + BM²

∴ 145 – 64 = BM²

∴ BM² = 81

∴ \(\small \sqrt{BM}\)² = \(\small \sqrt{81}\) …[Taking square roots]

∴ BM = 9 units 

 

Now,

BC = 2 BM …[∵ M is the midpoint of seg BC]

∴ BC = 2 × 9

∴ BC = 18 cm

 

Ans: BC is 18 cm.

5. In figure 2.30, point T is in the interior of rectangle PQRS, Prove that, TS² + TQ² = TP² + TR². (As shown in the figure, draw seg AB || side SR and A – T – B)

IMG 20230809 184630 Chapter 2 – Pythagoras Theorem

Given:

□PQRS is a rectangle

T is in the interior of □PQRS

 

To prove:

TS² + TQ² = TP² + TR²

 

Construction:

Draw a line parallel to side SR, through point T, intersecting sides PS and QR at point A and B such that (A – T – B).

 

Proof:

□PQRS is a rectangle …[Given]

∴ ∠SPQ = ∠PSR = ∠SRQ = ∠PQR = 90° …(i) [Each angle of a rectangle is 90⁰]

∴ seg PQ || seg SR …(ii) [Opposite sides of rectangle are parallel]

 

But, 

seg AB || seg SR …(iii) [Construction]

∴ seg PQ || seg SR || seg AB …(iv) [From (i), (ii) & (iii)] 

 

seg PQ || seg AB and PS is the transversal …[From (iv)]

∴ ∠QPS = ∠BAS = 90° …(v) [Corresponding angles test]

 

And,

seg PQ || seg AB and QR is the transversal …[From (iv)]

∴ ∠PQB = ∠ABR = 90° …(vi) [Corresponding angles test]

 

Now, 

∠BAS = 90° …[From (v)]

∴ ∠PAB = 90° …(vii) [Linear angles test]

 

Also,

∠ABR = 90° …[From (vi)]

∴ ∠ABQ = 90° …(viii) [Linear angles test]

 

In ∆PAT,

∠PAT = 90° …[From (vii), A – T – B]

∴  TP² = PA² + AT² …(ix) [By Pythagoras theorem]

 

In ∆SAT,

∠SAT = 90° …[From (v), A – T – B]

∴  TS² = AS² + AT² …(x) [By Pythagoras theorem]

 

In ∆QBT,

∠QBT = 90° …[From (viii), A – T – B]

∴  TQ² = QB² + BT² …(xi) [By Pythagoras theorem]

 

In ∆RBT,

∠RBT = 90° …[From (vi), A – T – B]

∴  TR² = BR² + BT² …(xii) [By Pythagoras theorem]

 

In □ABRS, 

seg AB || seg SR …[From (iii)]

seg AS || seg BR …[Opposite sides of rectangle are parallel and P – A – S, Q – B – R]

∴ □ABRS is parallelogram [By definition]

∴ AS = BR …(xiii) [Opposite sides of parallelogram are equal]

 

And,

In □ ABQP,

seg AB || seg PQ …[From (iv)]

seg AP || seg BQ …[Opposite sides of rectangle are parallel and P – A – S, Q – B – R]

∴ □ABPQ is parallelogram …[By definition]

∴ AP = QB …(xiv) [Opposite sides of parallelogram are equal]

 

Adding (x) and (xi), we get,

TS² + TQ² = AS² + AT² + QB² + BT²

∴ TS² + TQ² = BR² + AT² + AP² + BT²

∴ TS² + TQ² = BR² + BT² + AP² + AT²

∴ TS² + TQ² = TR² + TP² …[From (ix) and (xii)]

 

Hence proved. 

Problem Set 2

1. Some questions and their alternative answers are given. Select the correct alternative.

(1) Out of the following, which is the Pythagorean triplet?

(A) (1, 5, 10) 

(B) (3, 4, 5) 

(C) (2, 2, 2) 

(D) (5, 5, 2)

 

Ans: Option (B) : (3, 4, 5)

 

Solution:

5² = 25 …(i)

 

3² + 4² = 9 + 16

∴ 3² + 4² = 25 …(ii)

 

From (i) and (ii),

5² = 3² + 4²

 

∴ 3, 5, 4 is a Pythagorean triplet.

(2) In a right angled triangle, if the sum of the squares of the sides making the right angle is 169 then what is the length of the hypotenuse?

(A) 15 

(B) 13 

(C) 5 

(D) 12

 

Ans: Option (B) : 13

 

Solution:

(side 1)² + (side 2)² = 169

 

In a right angled triangle,

By Pythagoras Theorem, 

(Hypotenuse)² = (side 1)² + (side 2)²

(Hypotenuse)² = 169

Hypotenuse = 13 …[Taking Square Roots]

(3) Out of the dates given below, which date constitutes a Pythagorean triplet ?

(A) 15/08/17 

(B) 16/08/16 

(C) 3/5/17 

(D) 4/9/15 

 

Ans: Option (A) : 15/08/17

 

Solution:

17² = 289 …(i)

 

8² + 15² = 64 + 225

∴ 8² + 15² = 289 …(ii)

 

From (i) and (ii),

17² = 8² + 17²

 

∴ 8, 15, 17 is a Pythagorean triplet.

(4) If a, b, c are sides of a triangle and a² + b² = c², name the type of triangle.

(A) Obtuse angled triangle 

(B) Acute angled triangle 

(C) Right angled triangle 

(D) Equilateral triangle

 

Ans: Option (C) : Right angled triangle 

 

Explanation:

In a triangle, if the square of one side is equal to the sum of the squares of the remaining two sides, then the triangle is a right-angled triangle. 

(5) Find the perimeter of a square if its diagonal is 10\(\sqrt{2}\) cm.

(A)10 cm 

(B) 40\(\sqrt{2}\) cm 

(C) 20 cm 

(D) 40 cm

 

Ans: Option (D) : 40 cm

 

Solution:

Diagonal = 10\(\sqrt{2}\) cm

 

We can take the diagonal as the hypotenuse and the two sides of the square as remaining sides of the right angled triangle.

 

By Pythagoras Theorem, we get,

(Hypotenuse)² = (side)² + (side)²

∴ (10\(\sqrt{2}\))² = 2 (side)²

∴ 200 = 2 (side)²

∴ (side)² = \(\large \frac {200}{2}\)

∴ (side)² = 100

∴ side = 10 …[Taking square roots]

 

Perimeter of the square = 4 × side

∴ Perimeter of the square = 4 × 10

∴ Perimeter of the square = 40 cm

(6) Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of the altitude.

(A) 9 cm 

(B) 4 cm 

(C) 6 cm 

(D) 2 \(\sqrt{6}\) cm

 

Ans: Option (C) : 6 cm 

 

Solution:

We know that,

In a right angled triangle, the perpendicular segment to the hypotenuse from the opposite vertex, is the geometric mean of the segments into which the hypotenuse is divided.

 

∴ (Altitude)² = (Part 1)² × (Part 2)²

∴ (Altitude)² = 4 × 9

∴ (Altitude)² = 36

∴ Altitude = 6 cm

(7) Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenuse

(A) 24 cm 

(B) 30 cm

(C) 15 cm 

(D) 18 cm

 

Ans: Option (B) : 30 cm

 

Solution:

In a right angled triangle,

By Pythagoras Theorem, 

(Hypotenuse)² = (Height)² + (base)²

∴ (Hypotenuse)² = 24² + 18²

∴ (Hypotenuse)² = 324 + 576

∴ (Hypotenuse)² = 900

∴ Hypotenuse = 30 …[Taking Square Roots]

(8) In ∆ABC, AB = 6\(\sqrt{3}\) cm, AC = 12 cm, BC = 6 cm. Find measure of ∠A.

(A) 30° 

(B) 60° 

(C) 90° 

(D) 45°

Ans: Option (A) : 30° 

 

Solution:

In ABC, 

AB = 6\(\sqrt{3}\) cm

AC = 12 cm

BC = 6 cm

 

AB² = (6\(\sqrt{3}\))² = 108

AC² = (12)² = 144

BC² = (6)² = 36

 

∴ 108 + 36 = 144

i.e. AB² + BC² = AC² 

 

In a triangle, if the square of one side is equal to the sum of the squares of the remaining two sides, then the triangle is a right angled triangle.

 

In a right angled triangle, if one side is half of the hypotenuse then the angle opposite to that side is 30°. Here, BC is half of AC.

 

Thus, measure of ∠A is 30⁰

2. Solve the following examples.

(1) Find the height of an equilateral triangle having side 2a.

IMG 20230808 001121 Chapter 2 – Pythagoras Theorem

Given:

∆ABC is an equilateral triangle

AB = 2A

 

To find:

AM

 

Construction:

Seg AM ⊥ side BC, B – M – C

 

Solution:

In ∆AMB, 

∠AMB = 90⁰ …[Given]

∠B = 60⁰ …[Each angle of an equilateral triangle is 60⁰]

∠BAM = 30⁰ …[Sum of all angles of a triangle is 180⁰]

∴ ∆AMB is 30⁰ – 60⁰ – 90⁰ triangle

 

By 30⁰ – 60⁰ – 90⁰ triangle theorem,

AM = \(\large \frac {\sqrt{3}}{2}\) × AB …[Side opposite to 60⁰]

AM = \(\large \frac {\sqrt{3}}{2}\) × AB

∴ AM = \(\large \frac {\sqrt{3}}{2}\) × 2a 

∴ AM = \(\sqrt{3}\) a

 

Ans: The value of AM is \(\sqrt{3}\) a.

(2) Do sides 7 cm, 24 cm, 25 cm form a right angled triangle? Give a reason.

Given:

Sides of a triangle are 7 cm, 24 cm, 25 cm

 

To find:

Do they form a right angled triangle

 

Solution:

25² = 625 …(i)

 

7² + 24² = 49 + 576

 7² + 24² = 625 …(ii)

 

∴ 25² = 7² + 24² ...[From (i) and (ii)]

 

∴ The given measurements form a right-angled triangle …[By converse of Pythagoras theorem]

 

Ans: The given measurements form a right-angled triangle.

(3) Find the length of a diagonal of a rectangle having sides 11 cm and 60cm.

IMG 20230808 001045 Chapter 2 – Pythagoras Theorem

Given:

In □ABCD,

AB = 60 cm

BC = 11 cm.

 

To find:

AC

 

Solution:

In ∆ABC,

∠ABC = 90⁰ …[Each angle of a rectangle is 90⁰]

 

∴ AC² = AB² + BC² …[By Pythagoras theorem]

AC² = (60)² + (11)²

AC² = 3600 + 121

AC² = 3721

∴ AC = 61 cm …[Taking square roots]

 

Ans: The length of the diagonal of the rectangle is 61 cm.

(4) Find the length of the hypotenuse of a right angled triangle if the remaining  sides are 9 cm and 12 cm.

IMG 20230808 001141 Chapter 2 – Pythagoras Theorem

Given:

In ∆ABC,

∠ABC = 90⁰

AB = 9 cm

BC = 12 cm

 

To find:

AC

 

Solution:

In ∆ABC,

∠ABC = 90⁰ …[Given]

 

∴ AC² = AB² + BC² …[By Pythagoras theorem]

∴ AC² = (9)² + (12)²

∴ AC² = 81 + 144

∴ AC² = 225

∴ AC = 15 cm …[Taking square roots]

 

Ans: Length of the hypotenuse is 15 cm. 

(5) A side of an isosceles right angled triangle is x. Find its hypotenuse.

IMG 20230808 001152 Chapter 2 – Pythagoras Theorem

Given:

PQ = QR = x

 

To find:

PR

 

Solution:

In ∆PQR

∠PQR = 90⁰ …[Given]

 

∴ PR² = PQ² + QR² …[By Pythagoras theorem]

∴ PR² = x² + x² 

∴ PR² = 2x²

∴ PR = 2x …[Taking square roots]

 

Ans: The length of the hypotenuse is \(\sqrt{2}\) x units.

(6) In ∆PQR; PQ = \(\sqrt{8}\), QR = \(\sqrt{5}\), PR = \(\sqrt{3}\). Is ∆PQR a right angled triangle? If yes, which angle is 90°?

IMG 20230808 001204 Chapter 2 – Pythagoras Theorem

Given:

In ∆PQR,

PQ = \(\sqrt{8}\)

QR = \(\sqrt{5}\)

PR = \(\sqrt{3}\)

 

To find:

Is ∆PQR a right angled triangle

 

Solution:

PQ² = \((\sqrt{8})\)² = 8 …(i)

 

PR² + QR²  = \((\sqrt{3})\)² + \((\sqrt{5})\)²

∴ PR² + QR² = 3 + 5

∴ PR² + QR² = 8 …(ii)

 

∴ PQ² = PR² + QR² …[From (i) and (ii)]

∴ ∆PQR is a right angled triangle.

 

∴ ∠R = 90⁰…[Converse of Pythagoras theorem]

 

Ans: ∆PQR is a right angled triangle and ∠R = 90⁰.

3. In ∆RST, ∠S = 90°, ∠T = 30°, RT = 12 cm then find RS and ST.

IMG 20230808 001626 Chapter 2 – Pythagoras Theorem

Given:

In ∆RST

∠S = 90°

∠T = 30°

RT = 12 cm

 

To find:

RS and ST

 

Solution:

In ∆PSR, 

∠S = 90° …[Given]

∠T = 30⁰ …[Given]

∴ ∠R = 60⁰ …[Sum of all angles of a triangle is 180⁰]

∴ ∆PSR is 30⁰ – 60⁰ – 90⁰ triangle

 

By 30⁰ – 60⁰ – 90⁰ triangle theorem,

RS = \(\large \frac {1}{2}\) × RT …[Side opposite to 30⁰]

∴ RS = \(\large \frac {1}{2}\) × 12 

∴ RS = 6 cm

 

ST = \(\large \frac {\sqrt{3}}{2}\) × RT …[Side opposite to 60⁰]

ST = \(\large \frac {\sqrt{3}}{2}\) × 12

∴ ST = 6 \(\sqrt{3}\) cm

 

Ans: The value of RS = 6 cm and ST = 6 \(\sqrt{3}\) cm.

4. Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm.

IMG 20230808 001638 Chapter 2 – Pythagoras Theorem

Given:

□ABCD is a rectangle

AB = 16 cm

A(□\, ABCD) = 192 sq. cm.

 

To find:

AC

 

Solution:

□ ABCD is a rectangle

 

A(□\, ABCD) = length × breadth

∴ 192 = AB × BC

∴ 192 = 16 × BC

∴ \(\large \frac {192}{16}\) = BC

∴ BC = 12 cm 

 

In ∆ABC,

∠ABC = 90⁰ …[Each angle of a rectangle is 90⁰]

∴ AC² = AB² + BC² …[By Pythagoras theorem]

AC² = (16)² + (12)² 

∴ AC² = 256 + 144

∴ AC² = 400

∴ AC = 20 cm …[Taking square roots]

 

Ans: Length of the diagonal is 20 cm.

5. Find the length of the side and perimeter of an equilateral triangle whose height is \(\sqrt{3}\) cm.

IMG 20230808 001702 Chapter 2 – Pythagoras Theorem

Given:

∆ABC is an equilateral triangle

seg AM ⊥ side BC, B – M – C

AM = 3 cm

 

To find:

AB

Perimeter of ∆ABC

 

Solution:

In ∆AMB,

∠AMB = 90⁰ …[Given]

 ∠B = 60⁰ …[Each angle of an equilateral triangle is 60⁰]

∴ ∠BAM = 30⁰ …[Sum of all angles of a triangle is 180⁰]

∴ ∆AMB is 30⁰ – 60⁰ – 90⁰ triangle

 

By 30⁰ – 60⁰ – 90⁰ triangle theorem,

AM = \(\large \frac {\sqrt{3}}{2}\) × AB …[Side opposite to 60⁰]

∴ AB = \(\large \frac {2}{\sqrt{3}}\) × AM

∴ AB = \(\sqrt{3}\) × \(\large \frac {2}{\sqrt{3}}\)

∴ AB = 2 cm

 

Perimeter of ∆ABC = 3 × AB 

Perimeter of ∆ABC = 3 × 2 

Perimeter of ∆ABC = 6 cm

 

Ans: The value of AB is 2 cm and perimeter of ∆ABC is 6 cm.

6. In ∆ABC seg AP is a median. If BC = 18, AB² + AC² = 260 Find AP.

IMG 20230808 001716 Chapter 2 – Pythagoras Theorem

Given:

In ∆ABC

Seg AP is a median

BC = 18

AB² + AC² = 260

 

To find:

AP

 

Solution:

In ∆ABC,

Seg AP is the median on side BC

∴ BP = \(\large \frac {1}{2}\) × BC

∴ BP = \(\large \frac {1}{2}\) × 18

∴ BP = 9 units …(i)

 

In ∆ABC, seg AP is median …[Given]

∴ AB² + AC² = 2BP² + 2AP² …[By Apollonius theorem]

∴ 260 = 2(9² + AP²) …[From (i)]

∴ \(\large \frac {260}{2}\) = 81 + AP²

∴ AP² = 130 – 81

∴ AP² = 49

∴ AP = 7 units …[Taking square roots]

 

Ans: The value of AP is 7 units.

7. ∆ABC is an equilateral triangle. Point P is on base BC such that PC = \(\large \frac {1}{3}\) BC, if AB = 6 cm find AP.

IMG 20230808 001729 Chapter 2 – Pythagoras Theorem

Given:

∆ABC is an equilateral triangle.

AB = 6 cm

PC = \(\large \frac {1}{3}\) BC

 

To find:

AP

 

Construction:

Draw seg AM ⊥ BC, C – M – B

 

Solution:

AB = BC = AC …[Sides of an equilateral triangle are equal]

∵ AB = 6 cm

∴ BC = AC = 6 cm …(i) 

 

PC = \(\large \frac {1}{3}\) BC …[Given]

∴ PC = \(\large \frac {1}{3}\) × 6 

∴ PC = 2 cm …(ii)

 

In ∆AMC,

∠C = 60⁰…[Each angle of an equilateral triangle is 60⁰]

∠AMC = 90⁰ …[Construction]

 ∴ ∠CAM = 30⁰ …[Sum of all angles of a triangle is 180⁰]

∴ ∆AMC is 30⁰ – 60⁰ – 90⁰ triangle

 

By 30⁰ – 60⁰ – 90⁰ triangle theorem,

∴ CM = \(\large \frac {1}{2}\) AC …[Side opposite to 30⁰]

∴ CM = \(\large \frac {1}{2}\) × 6 cm 

∴ CM = 3 cm …(iii)

 

AM = \(\large \frac {\sqrt{3}}{2}\) × AC …[Side opposite to 60⁰]

∴ AM = \(\large \frac {\sqrt{3}}{2}\) × 6

∴ AM = 3\(\sqrt{3}\) …(iv)

 

PM = CM – CP …[C – P – M]

∴ PM = 3 – 2

∴ PM = 1 cm

 

In ∆AMP, 

∠AMP = 90⁰ …[Construction]

AP² = AM² + PM² …[By Pythagoras theorem]

AP² = \(\large (\)3\(\sqrt{3} \large )\)² + 1

AP² = 27 + 1

∴ AP² = 28

∴ AP = 2\(\sqrt{7}\) cm …[Taking square roots]

 

Ans: The value of AP is 2\(\sqrt{7}\) cm. 

8. From the information given in the figure 2.31, prove that PM = PN = \(\sqrt{3}\) × a

IMG 20230808 002342 Chapter 2 – Pythagoras Theorem

Given:

PQ = PR = MQ = QR = RN = a

 

To prove:

PM = PN = \(\sqrt{3}\) × a

 

Proof:

Point Q is the midpoint of seg MR …(i)

 

In ∆PMR,

Seg PQ is a median …[From (i) and by Definition]

∴ PM² + PR² = 2PQ² + 2QM² …[By Apollonius theorem]

∴ PM² + a² = 2a² + 2a²

∴ PM² + a² = 4a²

∴ PM² = 4a² – a²

∴ PM² = 3a²

∴ PM = \(\sqrt{3}\)a …[Taking square roots]

 

Point R is the midpoint of seg QN..(ii)

In ∆PQN,

Seg PR is a median …[From (ii) and by Definition]

∴ PQ² + PN² = 2PR² + 2RN² …[By Apollonius theorem]

∴ a² + PN² = 2a² + 2a²

∴ a² + PN² = 4a²

∴ PN² = 4a² – a²

∴ PN² = 3a²

∴ PN = \(\sqrt{3}\)a …[Taking square roots]

 

∴ PM = PN = \(\sqrt{3}\)a

 

Hence Proved.

9. Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

IMG 20230808 002358 Chapter 2 – Pythagoras Theorem

Given:

ABCD is a parallelogram

Diagonals AC and BD intersect each other at point M.

 

To prove: 

AC² + BD² = AB² + BC² + CD² + AD²

 

Proof:

□ ABCD is a parallelogram …[Given]

AM = CM = \(\large \frac {1}{2}\) AC …(i) 

BM = DM = \(\large \frac {1}{2}\) BD …(ii) [Diagonals of a parallelogram bisect each other]

 

In ∆ABC

Seg BM is a median …[From (i)]

∴ AB² + BC² = 2BM² + 2AM² …(iii) [By Apollonius theorem]

 

In ∆ADC,

Seg DM is a median …[From (i)]

∴ CD² + AD² = 2DM² + 2AM² …(iv) [By Apollonius theorem]

 

Adding (iii) and (iv)

∴ AB² + BC² + CD² + AD² = 2BM² + 2AM² + 2DM² + 2AM²

∴ AB² + BC² + CD² + AD² = 2BM² + 2DM² + 4AM²

∴ AB² + BC² + CD² + AD² = 2BM² + 2BM² + 4AM² …[From (ii)]

∴ AB² + BC² + CD² + AD² = 4BM² + 4AM²

∴ AB² + BC² + CD² + AD² = 4 [BM² + AM²]

∴ AB² + BC² + CD² + AD² = 4 \(\large [(\frac {1}{2}\) BD \(\large )\)² + \(\large (\frac {1}{2}\) AC \(\large )]\)² …[From (i) and (ii)]

∴ AB² + BC² + CD² + AD² = 4 \(\large [\frac {1}{4}\) BD² + \(\large \frac {1}{4}\) AC² \(\large ]\)

∴ AB² + BC² + CD² + AD² = 4 × \(\large \frac {1}{4}\) [BD² + AC²]

∴ AB² + BC² + CD² + AD² = BD² + AC²

∴ AC² + BD² = AB² + BC² + CD² + AD²

 

Hence Proved.

10. Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours, the distance between them was 15\(\sqrt{2}\) km. Find their speed per hour.

IMG 20230808 002410 Chapter 2 – Pythagoras Theorem

Given:

The distance between them was 15\(\sqrt{2}\)km

 

To find:

Their speed per hour 

 

Solution:

Let B represents the starting point of journey.

BA is the distance travelled by Prasad in the North direction.

BC is the distance travelled by Pranali in the East direction.

AC is the distance between Pranali and Prasad after two hours.

 

Let the speed of each one be x km/hr.

∴ Distance travelled by each one hour is 2x km.

i.e. AB = BC = 2x km

 

In ∆ABC, 

∠B = 90⁰ …[Line joining adjacent direction are ⊥ to each other]

∴ AB² + BC² = AC² …[By Pythagoras theorem]

∴ (2x)² + (2x)² = 15 \((\sqrt{2})\)²

∴ 4x² + 4x² = 225 × 2

∴ 8x² = 225 × 2

∴ x² = \(\large \frac {225 \,×\, 2}{8}\)

∴ x² = \(\large \frac {225}{4}\)

∴ x = \(\large \frac {15}{2}\) …[Taking square roots]

∴ x = 7.5 km/hr

 

Ans: Their speed is 7.5 km/hr. 

11. In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that : 4(BL² + CM²) = 5 BC²

IMG 20230808 002429 Chapter 2 – Pythagoras Theorem

Given:

In ∆ABC

∠BAC = 90°

seg BL and seg CM are medians of ∆ABC

 

To prove:

4(BL² + CM²) = 5 BC²

 

Proof:

In ∆BAC, 

∠BAC = 90⁰ …[Given]

∴ BC² = AB² + AC² …(i) [By Pythagoras theorem]

 

In ∆BAL, 

∠BAC = 90⁰ …[Given]

∴ BL² = AB² + AL² …(ii) [By Pythagoras theorem]

 

In ∆CAM, 

∠CAM = 90⁰ …[Given]

∴ CM² = AC² + AM² …(iii) [By Pythagoras theorem]

 

Adding (ii) and (iii),

BL² + CM² = AB² + AL² + AC² + AM²

∴ BL² + CM² = AB² + AC² + AL² + AM²

∴ BL² + CM² = BC² + AL² + AM² …[From (i)]

∴ BL² + CM² = BC² + \(\large (\frac {1}{2}\) AC \(\large )\)² + \(\large (\frac {1}{2}\) AB \(\large )\)² …[∵ L and M are the midpoint of sides AC and AB respectively]

∴ BL² + CM² = BC² + \(\large (\frac {AC²}{4}\) + \(\large (\frac {AB²}{4}\)

∴ 4(BL² + CM²) = 4BC² + AC² + AB² …[Multiplying throughout by 4]

∴ 4(BL² + CM²) = 4BC² + BC² …[From (i)]

∴ 4(BL² + CM²) = 5BC²

 

Hence proved. 

12. Sum of the squares of adjacent sides of a parallelogram is 130 sq.cm and length of one of its diagonals is14 cm. Find the length of the other diagonal.

IMG 20230808 002358 Chapter 2 – Pythagoras Theorem

Given:

□ ABCD is a parallelogram

AB² + BC² = 130 cm²

AC = 14 cm

 

To find:

BD

 

Solution:

□ ABCD is a parallelogram …[Given]

∴ BM = \(\large \frac {1}{2}\) BD …(i) 

∴ AM = \(\large \frac {1}{2}\) AC …(ii) …[Diagonals of a parallelogram bisect each other]

 

∴ AM = \(\large \frac {1}{2}\) × 14 

∴ AM = 7 cm

 

In ∆ABC,

seg BM is the median ...[From (ii) and Definition]

∴ AB² + BC² = 2AM² + 2BM² …[By Apollonius theorem]

∴ 130 = 2 (7² + BM²)

∴ \(\large \frac {130}{2}\) = 49 + BM²

∴ 65 = 49 + BM²

∴ 65 – 49 = BM²

∴ BM² = 16

∴ BM = 4 cm …[Taking square roots]

∴ \(\large \frac {1}{2}\) BD = 4 cm …[From (i)]

∴ BD = 8 cm

 

Ans: The value of BD is 8 cm. 

13. In ∆ABC, seg AD ⊥ seg BC, DB = 3CD. Prove that : 2AB² = 2AC² + BC²

IMG 20230808 002518 Chapter 2 – Pythagoras Theorem

Given:

In ∆ABC

seg AD  ⊥ seg BC

DB = 3CD

 

To prove:

2AB² = 2AC² + BC²

 

Proof:

In ∆ADB,

∠ADB = 90⁰ …[Given]

∴ AB² = AD² + DB² …[By Pythagoras theorem]

∴ AB² = AD² + (3CD)² [Given]

∴ AB² = AD² + 9CD² …(i)

 

In ∆ADC,

∠ADC = 90⁰ ...[Given]

∴ AC² = AD² + CD² …[By Pythagoras theorem]

∴ AD² = AC² – CD² …(ii)

AB² = AC² – CD² + 9CD² …[From (i) and (ii)]

∴ AB² = AC² + 8CD² …(iii)

 

But, 

BC = CD + DB …[C – D – B]

∴ BC = CD + 3CD …[Given]

∴ BC = 4CD

∴ CD = \(\large \frac {BC}{4}\) …(iv)

 

∴ AB² = AC² + 8 \(\large (\frac {BC²}{4})\)² …[From (iii) and (iv)]

∴ AB² = AC² + 8 × \(\large \frac {BC²}{16}\)²

∴ AB² = AC² + \(\large \frac {BC²}{2}\) …[From (iii) and (iv)]

∴ 2AB² = 2AC² + BC² …[Multiplying throughout by 2]

 

Hence proved.

14. In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex opposite the base and the centroid.

IMG 20230808 002930 Chapter 2 – Pythagoras Theorem

Given:

∆ABC is an isosceles triangle

AB = AC = 13 cm

BC = 10 cm

seg AD is the median

G is the centroid of ∆ABC

 

To find:

AG

 

Solution:

BD = \(\large \frac {1}{2}\) BC …[Median bisects opposite side]

∴ BD = \(\large \frac {1}{2}\) × 10 

∴ BD = 5 cm …(i)

 

In ∆ABC, 

seg AD is a median …[By Definition]

∴ AB² + AC2² = 2AD² + 2BD² …[By Apollonius theorem]

∴ 13² + 13² = 2 (AD² + 5²) [From (i) and Given]

∴ 169 + 169 = 2 (AD² + 25)

∴ 338 = 2 (AD² + 25)

∴ \(\large \frac {338}{2}\) = AD² + 25

∴ 169 – 25 = AD²

∴ 144 = AD²

∴ AD = 12 cm …[Taking square roots]

 

AG = \(\large \frac {2}{3}\) AD [Centroid divides each median in the ratio 3 : 1]

∴ AG = \(\large \frac {2}{3}\) × 12

∴ AG = 8 cm

 

Ans: The value of AG is 8 cm. 

15. In a trapezium ABCD, seg AB || seg DC, seg BD ⊥ seg AD, seg AC ⊥ seg BC, If AD = 15, BC = 15 and AB = 25. Find A(□ABCD)

IMG 20230808 002942 Chapter 2 – Pythagoras Theorem

Given:

In trapezium ABCD,

seg AB || seg DC

seg BD ⊥ seg AD

seg AC ⊥ seg BC

AD = 15

BC = 15

AB = 25

 

To find:

A(□ABCD)

 

Construction:

Draw seg CM ⊥ side AB, (A – M – B)

Draw seg DN ⊥ side AB, (A – N – B) 

IMG 20230808 002959 Chapter 2 – Pythagoras Theorem

Solution:

In ∆ABC,

∠ACB = 90⁰ …[Given]

 

∴ AC² + BC² = AB² …[By Pythagoras theorem]

∴ AC² + (15)² = (25)²

∴ AC² = (25)² – (15)²

∴ AC² = 625 – 225 

∴ AC² = 400

∴ AC = 20 units …[Taking square roots]

 

A (∆ABC) = \(\large \frac {1}{2}\) × AB × CM …(i)

Also, A (∆ABC) = \(\large \frac {1}{2}\) × AC × BC …(ii)

 

∴ \(\large \frac {1}{2}\) × AB × CM = \(\large \frac {1}{2}\) × AC × BC

∴ 25 × CM = 20 × 15

∴ CM = \(\large \frac {20\,×\,15}{25}\)

∴ CM = 12 units …(iii)

 

In ∆BMC, 

∠BMC = 90⁰ …[Construction]

 

∴ BC² = CM² + BM² …[By Pythagoras theorem]

∴ 15² = 12² + BM²

∴ BM² = 15² – 12² 

∴ BM² = 225 – 144

∴ BM² = 81

∴ BM = 9 units …(iv) …[Taking square roots]

∴ CM = DN …(v) [Perpendicular distance between the same two parallel lines are equal]

 

In ∆BMC and ∆AND,

∠BMC ≅ ∠AND …[Each angle is 90⁰]

BC ≅ AD …[Given]

seg CM ≅ seg DN …[From (v)]

∴ ∆BMC ≅ ∆AND …[Hypotenuse side test]

 

∴ seg BM ≅ seg AN …(vi) …[c.s.s.t.]

∴ AN = 9 units …(vii) ...[From (iv) and (vi)]

 

AB = AN + MN + BM …[A – N – M – B]

∴ 25 = 9 + MN + 9

∴ MN = 25 – 18 

∴ MN= 7 units ….(viii)

 

In □CMND, 

seg MN || seg CD …[Given, A – N – M – B]

seg CM || seg DN …[Perpendiculars drawn to the same line are parallel]

∴ □ CMND is a parallelogram …[By Definition]

∴ CD = MN …[Opposite sides of parallelogram are equal]

∴ CD = 7 units …[From (viii)]

 

∴ A (trapezium ABCD) = \(\large \frac {1}{2}\) (AB + CD) × CM

∴ A (trapezium ABCD) = \(\large \frac {1}{2}\) (25 + 7) × 12

∴ A (trapezium ABCD) = \(\large \frac {1}{2}\) (32) × 12 

∴ A (trapezium ABCD) = 192 sq. units. 

 

Ans: A (trapezium ABCD) = 192 square units.

16. In the figure 2.35, ∆PQR is an equilateral triangle. Point S is on seg QR such that QS = \(\large \frac {1}{3}\) QR. Prove that : 9 PS² = 7 PQ²

IMG 20230808 003452 Chapter 2 – Pythagoras Theorem

Given:

∆PQR is an equilateral triangle

QS = \(\large \frac {1}{3}\) QR.

 

To prove: 

9 PS² = 7 PQ²

 

Construction:

Draw seg PT ⊥ side QR, (Q – S – T – R)

 

Proof: 

∆PQR is an equilateral triangle …[Given]

PQ = QR = PR …(i) [Sides of an equilateral triangle]

 

In ∆PTS, 

∠PTS = 90⁰ …[Construction]

∴ PS² = PT² + ST² …(ii) [By Pythagoras theorem]

 

In ∆PTQ,

∠PTQ = 90⁰ …[Construction]

∠PQT = 60⁰ …[All angles of an equilateral triangle are 60⁰]

∠QPT = 30⁰ …[Remaining angle]

∴ ∆PTQ is a 30° – 60° – 90° triangle

 

By 30° – 60° – 90° triangle theorem,

∴ PT = \(\large (\frac {\sqrt{3}}{2}\)PQ …(iii) [Side opposite to 60°]

∴ QT = \(\large \frac {1}{2}\)PQ …(iv) [Side opposite to 30⁰]

 

ST = QT – QS …[Q – S – T]

∴ ST = \(\large \frac {1}{2}\)PQ – \(\large \frac {1}{3}\)QR …[From (iv) and Given]

∴ ST = \(\large \frac {1}{2}\)PQ – \(\large \frac {1}{3}\)PQ ...[From (i)]

∴ ST = \(\large (\frac {3PQ\,-\,2PQ}{6}\)

∴ ST = \(\large \frac {1}{6}\)PQ …(v)

 

∴ PS² = \(\large (\frac {\sqrt{3}}{2}\)PQ\(\large)\)² +\(\large (\frac {1}{6}\)PQ\(\large)\)² …[From (ii) (iii) and (v)]

∴ PS² = \(\large \frac {3PQ²}{4}\) + \(\large \frac {PQ²}{36}\)

∴ PS² = \(\large \frac {27PQ²}{36}\) + \(\large \frac {PQ²}{36}\) …[Equalising the denominators]

∴ PS² = \(\large \frac {27PQ²\,+\,PQ²}{36}\) ∴ PS² = \(\large \frac {28PQ²}{36}\)

∴ PS² = \(\large \frac {7}{9}\) PQ2

∴ 9 PS² = 7 PQ²

 

Hence Proved.

17. Seg PM is a median of ∆PQR. If PQ = 40, PR = 42 and PM = 29, find QR.

IMG 20230808 003612 Chapter 2 – Pythagoras Theorem

Given: 

Seg PM is a median of ∆PQR

PQ = 40

PR = 42

PM = 29 

 

To find: 

QR

 

Solution: 

In ∆PQR, seg PM is the median …[Given]

∴ PQ² + PR² = 2PM² + 2QM² …[By Appollonius theorem]

∴ 40² + 42² = 2 (29)² + 2(QM)²

∴ (40)² + (42)² = 2 (29² + QM²)

∴ 1600 + 1764 = 2 (841 + QM²)

∴ 3364 = 2 (841 + QM²)

∴ \(\large \frac {3364}{2}\) = 841 + QM²

∴ 1682 = 841 + QM²

∴ 1682 – 841 = QM²

∴ QM² = 841

∴ QM = 29 …[Taking square root]

 

QR = 2QM …[M is midpoint of seg QR]

∴ QR = 2 × 29

∴ QR = 58 units

 

Ans: The value of QR is 58 units. 

18. Seg AM is a median of ∆ABC. If AB = 22, AC = 34, BC = 24, find AM.

IMG 20230808 003640 Chapter 2 – Pythagoras Theorem

Given:

Seg AM is a median of ∆ABC.

AB = 22

AC = 34

BC = 24

 

To find:

AM 

 

Solution:

In ∆ABC,

BM = \(\large \frac {1}{2}\)BC …[M is the midpoint of BC]

∴ BM = \(\large \frac {1}{2}\) × 24 

∴ BM = 12 units

 

In ∆ABC, seg AM is the median [Given]

∴ AB² + AC² = 2AM² + 2BM² …[By Apollonius theorem]

∴ 222 + 342 = 2 (AM² + BM²)

∴ 484 + 1156 = 2 (AM² + 12²)

∴ 1640 = 2(AM² + 144)

∴ \(\large \frac {1640}{2}\) = AM² + 144

∴ 820 = AM² + 144

∴ 820 – 144 = AM²

∴ AM² = 676

∴ AM = 26 units …[Taking square root]

 

Ans: The value of AM is 26 units.