Maharashtra Board Textbook Solutions for Standard Seven

Miscellaneous Problems : Set 1

1. Solve the following.

(i) (– 16) × (– 5) 

Solution: 

(– 16) × (– 5) = 80

 

(ii) (72) ÷ (– 12) 

Solution: 

72 ÷ (– 12) = \(\large \frac {72}{(–\,1)\,×\,12}\)

∴ 72 ÷ (– 12) = \(\large \frac {12\,×\,6}{(–\,1)\,×\,12}\)

∴ 72 ÷ (– 12) = \(\large \frac {6}{(–\,1)}\)

∴ 72 ÷ (– 12) = – 6

 

(iii) (– 24) × (2)

Solution: 

(– 24) × (2) = – 48

 

(iv) 125 ÷ 5 

Solution: 

125 ÷ 5  = \(\large \frac {25\,×\,5}{5}\)

∴ 125 ÷ 5 = 25

 

(v) (– 104) ÷ (– 13) 

Solution: 

(– 104) ÷ (– 13) = \(\large \frac {(–\,1)\,×\,104}{(–\,1)\,×\,13}\)

∴ (– 104) ÷ (– 13) = \(\large \frac {13\,×\,8}{13}\)

∴ (– 104) ÷ (– 13) = 8

 

(vi) 25 × (– 4)

Solution: 

25 × (– 4) = – 100

2. Find the prime factors of the following numbers and find their LCM and HCF.

(i) 75, 135
Solution:

IMG 20231014 164127 Miscellaneous Problems : Set 1

75 = 3 × 5 × 5

135 = 3 × 3 × 3 × 5

 

∴ HCF of 75 and 135 = 3 × 5

∴ HCF of 75 and 135 = 15

 

And,

LCM of 75 and 135 = 3 × 5 × 5 × 3 × 3

∴ LCM of 75 and 135 = 675

(ii) 114, 76
Solution:

IMG 20231014 164137 Miscellaneous Problems : Set 1

114 = 2 × 3 × 19

76 = 2 × 2 × 19

 

∴ HCF of 114 and 76 = 2 × 19

∴ HCF of 114 and 76 = 38

 

And,

LCM of 114 and 76 = 2 × 19 × 3 × 2

∴ LCM of 114 and 76 = 228

(iii) 153, 187 

Solution:

IMG 20231014 164146 Miscellaneous Problems : Set 1

153 = 3 × 3 × 17

187 = 11 × 17

 

∴ HCF of 153 and 187 = 3 × 5

 

And,

LCM of 153 and 187 = 17 × 3 × 3 × 11

∴ LCM of 153 and 187 = 1683

(iv) 32, 24, 48

Solution: 

IMG 20231014 164157 Miscellaneous Problems : Set 1

32 = 2 × 2 × 2 × 2 × 2

24 = 2 × 2 × 2 × 3

48 = 2 × 2 × 2 × 2 × 3

 

∴ HCF of 32, 24 and 48 = 2 × 2 × 2

∴ HCF of 32, 24 and 48 = 8

 

And,

LCM of 32, 24 and 48 = 2 × 2 × 2 × 2 × 2 × 3

∴ LCM of 32, 24 and 48 = 96

3. Simplify.

(i) \(\large \frac {322}{391}\)
Solution:

IMG 20231014 170324 Miscellaneous Problems : Set 1

HCF of 322 and 391 = 23

∴ \(\large \frac {322}{391}\) = \(\large \frac {322\,÷\,23}{391\,÷\,23}\) = \(\large \frac {14}{17}\)

(ii) \(\large \frac {247}{209}\)  

Solution: 

IMG 20231014 170407 Miscellaneous Problems : Set 1

HCF of 247and 209 = 19

∴ \(\large \frac {247}{209}\) = \(\large \frac {247\,÷\,19}{209\,÷\,19}\) = \(\large \frac {13}{11}\)

(iii) \(\large \frac {117}{156}\) 

Solution:

IMG 20231014 170313 Miscellaneous Problems : Set 1

HCF of 117 and 156 = 39

∴ \(\large \frac {117}{156}\) = \(\large \frac {117\,÷\,39}{156\,÷\,39}\) = \(\large \frac {3}{4}\)

4. Find the square root of the following numbers.

(i) 784
Solution:

IMG 20231014 212138 Miscellaneous Problems : Set 1

∴ 784 = 2 × 2 × 2 × 2 × 7 × 7

∴ \(\sqrt{784}\) = 2 × 2 × 7

∴ \(\sqrt{784}\) = 28

(ii) 225 

Solution:

IMG 20231014 212127 Miscellaneous Problems : Set 1

∴ 225 = 3 × 3 × 5 × 5

∴ \(\sqrt{225}\) = 3 × 5

∴ \(\sqrt{225}\) = 15

(iii) 1296 

Solution:

IMG 20231014 212102 Miscellaneous Problems : Set 1

∴ 1296 = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3
∴ \(\sqrt{1296}\) = 2 × 2 × 3 × 3
∴ \(\sqrt{1296}\) = 36

(iv) 2025 

Solution:

IMG 20231014 212156 Miscellaneous Problems : Set 1

∴ 2025 = 3 × 3 × 3 × 3 × 5 × 5

∴ \(\sqrt{2025}\) = 3 × 3 × 5

∴ \(\sqrt{2025}\) = 45

(v) 256

Solution: 

IMG 20231014 212102 1 Miscellaneous Problems : Set 1

∴ 256 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

∴ \(\sqrt{256}\) = 2 × 2 × 2 × 2

∴ \(\sqrt{256}\) = 16

5. There are four polling booths for a certain election. The numbers of men and women who cast their vote at each booth is given in the table below. Draw a joint bar graph for this data.

IMG 20231014 181105 Miscellaneous Problems : Set 1

Solution: 

std 7 miscellaneous sum jpg Miscellaneous Problems : Set 1

6. Simplify the expressions.

(i) 45 ÷ 5 + 20 × 4 – 12 

Solution: 

45 ÷ 5 + 120 × 4 – 12

= 9 + 80 – 12

= 89 – 12

= 77

 

∴ 45 ÷ 5 + 20 × 4 – 12 = 77

 

(ii) (38 – 8) × 2 ÷ 5 + 13

Solution: 

(38 – 8) × 2 ÷ 5 + 13

= 30 × 2 ÷ 5 + 13

= 60 ÷ 5 + 13

= 12 + 13

= 25

 

∴ (38 – 8) × 2 ÷ 5 + 13 = 25

 

(iii) \(\large \frac {5}{3}\) + \(\large \frac {4}{7}\) ÷ \(\large \frac {32}{21}\)

Solution:

\(\large \frac {5}{3}\) + \(\large \frac {4}{7}\) ÷ \(\large \frac {32}{21}\)

= \(\large \frac {5}{3}\) + \(\large \frac {4}{7}\) × \(\large \frac {21}{32}\)

= \(\large \frac {5}{3}\) + \(\large \frac {3}{8}\)

= \(\large \frac {5\,×\,8}{3\,×\,8}\) + \(\large \frac {3\,×\,3}{8\,×\,3}\)

= \(\large \frac {40}{24}\) + \(\large \frac {9}{24}\)

= \(\large \frac {40\,+\,9}{24}\)

= \(\large \frac {49}{24}\)

 

\(\large \frac {5}{3}\) + \(\large \frac {4}{7}\) ÷ \(\large \frac {32}{31}\) = \(\large \frac {49}{24}\)

 

(iv) 3 × {4 [85 + 5 – (15 ÷ 3)] + 2}

Solution: 

3 × {4 [85 + 5 – (15 – 3)] + 2}

= 3 × {4[90 – 5] + 2}

= 3 × {4 × 85 + 2}

= 3 × (340 + 2)

= 3 × 342

= 1026

 

3 × {4 [85 + 5 – (15 ÷ 3)] + 2} = 1026

7. Solve.

(i) \(\large \frac {5}{12}\) + \(\large \frac {7}{16}\)

Solution:

\(\large \frac {5}{12}\) + \(\large \frac {7}{16}\)

= \(\large \frac {5\,×\,4}{12\,×\,4}\) + \(\large \frac {7\,×\,3}{16\,×\,3}\)

= \(\large \frac {20}{48}\) + \(\large \frac {21}{48}\)

= \(\large \frac{20 \,+\, 21}{48}\)

= \(\large \frac {41}{48}\)

 

∴ \(\large \frac {5}{12}\) + \(\large \frac {7}{16}\) = \(\large \frac {41}{48}\)

(ii) 3 \(\large \frac {2}{5}\) – 2 \(\large \frac {1}{4}\) 

Solution:

3 \(\large \frac {2}{5}\) – 2 \(\large \frac {1}{4}\) 

= \(\large \frac {3\,×\,5\,+\,2}{5}\) – \(\large \frac {2\,×\,4\,+\,1}{4}\) 

= \(\large \frac {17}{5}\) – \(\large \frac {9}{4}\) 

= \(\large \frac {17\,×\,4}{5\,×\,4}\) – \(\large \frac {9\,×\,5}{4\,×\,5}\) 

= \(\large \frac {68}{20}\) – \(\large \frac {45}{20}\) 

= \(\large \frac {68\,–\,45}{20}\)

= \(\large \frac {23}{20}\)

 

∴ 3 \(\large \frac {2}{5}\) – 2 \(\large \frac {1}{4}\)  = \(\large \frac {23}{20}\)

(iii) \(\large \frac {12}{5}\) × \(\large \frac {–\,10}{3}\)

Solution:

\(\large \frac {12}{5}\) × \(\large \frac {–\,10}{3}\)

= 4 × (– 2)

= – 8

 

∴ \(\large \frac {12}{5}\) × \(\large \frac {–\,10}{3}\) = – 8

(iv*) 4 \(\large \frac {3}{8}\) ÷ \(\large \frac {25}{18}\)

Solution:

4 \(\large \frac {3}{8}\) ÷ \(\large \frac {25}{18}\)

= \(\large \frac {4\,×\,8\,+\,3}{8}\) ÷ \(\large \frac {25}{18}\) 

= \(\large \frac {35}{8}\) ÷ \(\large \frac {25}{18}\) 

= \(\large \frac {35}{8}\) × \(\large \frac {18}{25}\) 

= \(\large \frac {7}{4}\) × \(\large \frac {9}{5}\) 

= \(\large \frac {63}{20}\) 

 

∴ 4 \(\large \frac {3}{8}\) ÷ \(\large \frac {25}{18}\) = \(\large \frac {63}{20}\) 

8. Construct ∆ABC such that m∠A = 55°, m∠B = 60°, and l(AB) = 5.9 cm.

Solution:

IMG 20231014 235640 Miscellaneous Problems : Set 1

This is the required construction.

9. Construct ∆XYZ such that, l(XY) = 3.7 cm, l(YZ) = 7.7 cm, l(XZ) = 6.3 cm.

Solution:

IMG 20231014 234927 Miscellaneous Problems : Set 1

This is the required construction.

10. Construct ∆PQR such that, m∠P = 80°, m∠Q = 70°, l(QR) = 5.7 cm.

Solution:

In ∆PQR,
m∠P + m∠Q + m∠R = 180° …[Sum of the measures of the angles of a triangle is 180°]
∴ 80 + 70 + m∠R = 180
∴ 150 + m∠R = 180
∴ m∠R = 180 – 150
∴ m∠R = 30°

IMG 20231014 234853 Miscellaneous Problems : Set 1

This is the required construction.

11. Construct ∆EFG from the given measures. l(FG) = 5 cm, m∠EFG = 90°, l(EG) = 7 cm.

Solution:

IMG 20231014 235650 Miscellaneous Problems : Set 1

This is the required construction.

12. In ∆LMN, l(LM) = 6.2 cm, m∠LMN = 60°, l(MN) = 4 cm. Construct ∆LMN.

Solution:

IMG 20231014 234909 Miscellaneous Problems : Set 1

This is the required construction.

13. Find the measures of the complementary angles of the following angles.

(i) 35° 

Solution:

Let the measure of the complementary angle be x°.
35 + x = 90
∴ x = 90 – 35
∴ x = 55

 

∴ The complementary angle of 35° is 55°.

 

(ii) a° 

Solution:

Let the measure of the complementary angle be x°.
a + x = 90
∴ x = 90 – a

 

∴ The complementary angle of a° is (90 – a)°.

 

(iii) 22° 

Solution:

Let the measure of the complementary angle be x°.
22 + x = 90
∴ x = 90 – 22
∴ x = 68

 

∴ The complementary angle of 22° is 68°.

 

(iv) (40 – x)°

Solution:

Let the measure of the complementary angle be a°.
40 – x + a = 90
∴ a = 90 – 40 + x
∴ a = 50 + x

 

∴ The complementary angle of (40 – x)° is (50 + x)°.

14. Find the measures of the supplements of the following angles.

(i) 111° 

Solution: 

Let the measure of the supplementary
angle be x°.
111 + x = 180
∴ x = 180 – 111
∴ x = 69

 

∴ The supplementary angle of 111° is 69°.

 

(ii) 47° 

Solution: 

Let the measure of the supplementary angle be x°.
47 + x = 180
∴ x = 180 – 47
∴ x = 133


∴ The supplementary angle of 47° is 133°. 

 

(iii) 180° 

Solution: 

Let the measure of the supplementary angle be x°.
180 + x = 180
∴ x = 180 – 180
∴ x = 0


∴ The supplementary angle of 180° is 0°.

 

(iv) (90 – x)°

Solution: 

Let the measure of the supplementary angle be a°.
90 – x + a = 180
∴ a = 180 – 90 + x
∴ a = 90 + x

 

∴ The supplementary angle of (90 – x)° is (90 + x)°.

15. Construct the following figures.

(i) A pair of adjacent angles 

Solution:

IMG 20231004 233233 Miscellaneous Problems : Set 1

(ii) Two supplementary angles which are not adjacent angles.

Solution:

IMG 20231014 213709 Miscellaneous Problems : Set 1

(iii) A pair of adjacent complementary angles.

Solution:

IMG 20231014 213658 Miscellaneous Problems : Set 1

16. In ∆PQR, the measures of ∠P and ∠Q are equal and m∠PRQ = 70°. Find the measures of the following angles.

IMG 20231015 000010 Miscellaneous Problems : Set 1

(i) m∠PRT 

(ii) m∠P 

(iii) m∠Q

Solution:

∠PRQ and ∠PRT are angles in a linear pair.
m∠PRQ + m∠PRT = 180°
∴ 70 + m∠PRT = 180
∴ m∠PRT = 180 – 70
∴ m∠PRT = 110°


Now,

∠PRT is the exterior angle of ∆PQR.
∴ m∠P + m∠Q = m∠PRT
∴ m∠P + m∠P = m∠PRT …[The measures of ∠P and ∠Q is same]
∴ 2m∠P = 110
∴ m∠P = \(\large \frac {110}{2}\)
∴ m∠P = 55°

and m∠Q = 55° 

17. Simplify.

(i) 5⁴ × 5³

Solution:

5⁴ × 5³

= 5 ⁴+³
= 5⁷

 

∴ 5⁴ × 5³ = 5⁷

(ii) \(\left(\large\frac23\right)^6\) ÷ \(\left(\large\frac23\right)^9\)

Solution:

\(\left(\large\frac23\right)^6\) ÷ \(\left(\large\frac23\right)^9\)

= \(\left(\large\frac23\right)^{6\;-\;9}\)

= \(\left(\large\frac23\right)^{-3}\)

= \(\left(\large\frac32\right)^{3}\)

 

∴ \(\left(\large\frac23\right)^6\) ÷ \(\left(\large\frac23\right)^9\) = \(\left(\large\frac32\right)^{3}\)

(iii) \(\left (\large \frac72\right)^8\) × \(\left (\large \frac72\right)^{-6}\)

Solution:

\(\left (\large \frac72\right)^8\) × \(\left (\large \frac72\right)^{-6}\)

= \(\left (\large \frac72\right)^{8\,+(-6)}\)

= \(\left (\large \frac72\right)^{8-6}\)

= \(\left (\large \frac72\right)^2\)

 

∴ \(\left (\large \frac72\right)^8\) × \(\left (\large \frac72\right)^{-6}\) = \(\left (\large \frac72\right)^2\)

(iv) \(\left (\large \frac45\right)^2\) ÷ \(\left (\large \frac54\right)\)

Solution:

\(\left (\large \frac45\right)^2\) ÷ \(\left (\large \frac54\right)\)

= \(\left (\large \frac45\right)^2\) × \(\left (\large \frac45\right)\)

= \(\left (\large \frac45\right)^{2+1}\)

= \(\left (\large \frac45\right)^3\)

 

∴ \(\left (\large \frac45\right)^2\) ÷ \(\left (\large \frac54\right)\) = \(\left (\large \frac45\right)^3\)

18. Find the value.

(i) 17\(^{16}\) ÷ 17\(^{16}\)

Solution:

17\(^{16}\) ÷ 17\(^{16}\)

= 17\(^{16\, – \,16}\)

= 17\(^0\)

= 1

 

∴ 17\(^{16}\) ÷ 17\(^{16}\) = 1

(ii) 10\(^{-\,3}\)

Solution:

10\(^{-\,3}\)

= \(\large \frac{1}{10^3}\)

= \(\large \frac{1}{1000}\)

 

∴ 10\(^{-\,3}\) = \(\large \frac{1}{1000}\)

(iii) (23)\(^2\)

Solution:

(23)\(^2\)

= 23 × 23

= 529

 

∴ (23)\(^2\) = 529

(iv) 4\(^6\) × 4\(^{-\,4}\)

Solution:

4\(^6\) × 4\(^{-\,4}\)

= 4\(^{6\,+(-4)}\)

= 4\(^{6\,-\,4}\)

= 4\(^2\)

= 4 × 4

= 16

 

∴ 4\(^6\) × 4\(^{-\,4}\) = 16

19. Solve.

(i) (6a – 5b – 8c) + (15b + 2a – 5c) 

Solution:

(6a – 5b  – 8c) + (15b + 2a – 5c)

= (6a + 2a) + (– 5b + 15b) + (– 8c – 5c)
= 8a + 10b – 13c

 

∴ (6a – 5b  – 8c) + (15b + 2a – 5c) = 8a + 10b – 13c

 

(ii) (3x + 2y)(7x – 8y)

Solution:

(3x + 2y) (7x – 8y)
= 3x × (7x – 8y) + 2yx (7x – 8y)
= 21x² – 24xy + 14xy – 16y²
= 21x² – 10xy – 16y²

 

∴ (3x + 2y) (7x – 8y) = 21x² – 10xy – 16y²

 

(iii) (7m – 5n) – (– 4n – 11m) 

Solution:

(7m – 5n) – (– 4n – 11m)
= 7m – 5n + 4n + 11m
= (7m + 11m) + (– 5n + 4n)
= 18m – n

 

∴ (7m – 5n) – (– 4n – 11m) = 18m – n

 

(iv) (11m – 12n + 3p) – (9m + 7n – 8p)

Solution:

(11m – 12n + 3p) – (9m + 7n – 8p)
= 11m – 12n + 3p – 9m – 7n + 8p
= (11m – 9m) + (– 12n – 7n) + (3p + 8p)
= 2m – 19n + 11p

 

∴ (11m – 12n + 3p) – (9m + 7n – 8p) = 2m – 19n + 11p

20. Solve the following equations.

(i) 4(x + 12) = 8 

Solution:

4(x + 12) = 8
∴ 4x + 48 = 8
∴ 4x = 8 – 48
∴ 4x = 40
∴ x = − \(\large \frac {40}{4}\)
∴ x = 10

 

(ii) 3y + 4 = 5y – 6

Solution:

3y + 4 = 5y – 6
∴ 3y + 4 + 6 = 5y 
∴ 3y + 10 = 5y
∴ 10 = 5y – 3y
∴ 2y = 10
∴ y = \(\large \frac {10}{2}\)
∴ y = 5

Multiple Choice Questions

Choose the right answer from the options given after every question. 

1. The three angle bisectors of a triangle are concurrent. Their point of concurrence is called the ______.

(i) circumcentre 

(ii) apex 

(iii) incentre 

(iv) point of intersection

 

Ans: Option (iii) : incentre

2. \(\large [(\frac {3}{7})\small^{-3}\large] \small^{-4}\) = ______.

(i) \(\large (\frac {3}{7})\small^{-7}\)

(ii) \(\large (\frac {3}{7})\small^{-10}\)

(iii) \(\large (\frac {7}{3})\small^{12}\)

(iv) \(\large (\frac {3}{7})\small^{20}\)

 

Ans: Option (iii) : \(\large (\frac {7}{3})\small^{12}\)

3. The simplest form of 5 ÷ \(\large (\frac {3}{2})\) – \(\large \frac {1}{3}\) is ______.

(i) 3 

(ii) 5 

(iii) 0

(iv) \(\large \frac {1}{3}\)

 

Ans: Option (i) : 3

4. The solution of the equation 3x – \(\large \frac {1}{2}\) = \(\large \frac {5}{2}\) + x is ______

(i) \(\large \frac {5}{3}\)

(ii) \(\large \frac {7}{2}\)

(iii)

(iv) \(\large \frac {3}{2}\)

 

Ans: Option (iv) : \(\large \frac {3}{2}\)

5*. Which of the following expressions has the value 37?

(i) 10 × 3 + (5 + 2) 

(ii) 10 × 4 + (5 – 3)

(iii) 8 × 4 + 3 

(iv) (9 × 3) + 2

 

Ans: Option (i) : 10 × 3 + (5 + 2) 

Solution:

10 × 3 + (5 + 2) 

= 30 + (7)

= 37