Maharashtra Board Textbook Solutions for Standard Seven

Chapter 8 – Algebraic Expressions and Operations on them

Practice Set 32

Classify the following algebraic expressions as monomials, binomials, trinomials or polynomials.

(i) 7x 

Ans: Monomial 

 

(ii) 5y – 7z 

Ans: Binomial

 

(iii) 3x³ – 5x² – 11 

Ans: Trinomial

 

(iv) 1 – 8a – 7a² – 7a³

Ans: Polynomial

 

(v) 5m – 3 

Ans: Binomial

 

(vi) a 

Ans: Monomial

 

(vii) 4 

Ans: Monomial

 

(viii) 3y² – 7y + 5

Ans: Trinomial

Practice Set 33

Add.

(i) 9p + 16q ; 13p + 2q 

Solution: 

(9p + 16q) + (13p + 2q)

= (9p + 13p) + (16q + 2q)

= 22p + 18q

 

∴ (9p + 16q) + (13p + 2q) = 22p + 18q

 

(ii) 2a + 6b + 8c; 16a + 13c + 18b 

Solution: 

(2a + 6b + 8c) + (16a + 13c + 18b)

= (2a + 16a) + (6b + 18b) + (8c + 13c)

= 18a + 24b + 21c

 

∴ (2a + 6b + 8c) + (16a + 13c + 18b) = 18a + 24b + 21c

 

(iii) 13x² – 12y² ; 6x² – 8y² 

Solution: 

(13x² – 12y²) + (6x² – 8y²)

= (13x² + 6x²) + [(– 12y²) + (– 8y²)]

= 19x² + (– 20y²)

= 19x² – 20y²

 

∴ (13x² – 12y²) + (6x² – 8y²) = 19x² – 20y²

 

(iv) 17a²b² + 16c ; 28c – 28a²b²

Solution: 

(17a²b² + 16c) + (28c – 28a²b²)

= [17a²b² + (– 28a²b²)] + (16c + 28c)

= – 11a²b² + 44c

 

∴ (17a²b² + 16c) + (28c – 28a²b²) = – 11a²b² + 44c

 

(v) 3y² – 10y + 16 ; 2y – 7 

Solution: 

(3y² – 10y + 16) + (2y – 7)

= 3y² + (– 10y + 2y) + (16 – 7)

= 3y² – 8y + 9

 

∴ (3y² – 10y + 16) + (2y – 7) = 3y² – 8y + 9

 

(vi) – 3y² + 10y – 16 ; 7y² + 8

Solution: 

(– 3y² + 10y – 16) + (7y² + 8)

= (– 3y² + 7y²) + (10y) + (– 16 + 8)

= 4y² + 10y – 8

 

∴ (– 3y² + 10y – 16) + (7y² + 8) = 4y² + 10y – 8

Practice Set 34

Subtract the second expression from the first. 

(i) (4xy – 9z) ; (3xy – 16z) 

Solution: 

(4xy – 9z) – (3xy – 16z)

= 4xy – 9z – 3xy + 16z

= (4xy – 3xy) + (16z – 9z)

= xy + 7z

 

∴ (4xy – 9z) – (3xy – 16z) = xy + 7z

 

(ii) (5x + 4y + 7z) ; (x + 2y + 3z)

Solution: 

(5x + 4y + 7z) – (x + 2y + 3z)

= 5x + 4y + 7z – x – 2y – 3z

= (5x – x) + (4y – 2y) + (7z – 3z)

= 4x + 2y + 4z

 

∴ (5x + 4y + 7z) – (x + 2y + 3z) = 4x + 2y + 4z

 

(iii) (14x² + 8xy + 3y²) ; (26x² – 8xy – 17y²) 

Solution: 

(14x² + 8xy + 3y²) – (26x² – 8xy – 17y²)

= 14x² + 8xy + 3y² – 26x² + 8xy + 17y²

= (14x² – 26x²) + (8xy + 8xy) + (3y² + 17y²)

= – 12x² + 16xy + 20y²

 

∴ (14x² + 8xy + 3y²) – (26x² – 8xy – 17y²) = – 12x² + 16xy + 20y²

 

(iv) (6x² + 7xy + 16y²);(16x² – 17xy)

Solution: 

(6x² + 7xy + 16y²) – (16x² – 17xy)

= 6x² + 7xy + 16y² – 16x² + 17xy

= (6x² – 16x²) + (7xy + 17xy) + 16y²

= – 10x² + 24xy + 16y²

 

∴ (6x² + 7xy + 16y²) – (16x² – 17xy) = – 10x² + 24xy + 16y²

 

(v) (4x + 16z) ; (19y – 14z + 16x)

Solution: 

(4x + 16z) – (19y – 14z + 16x)

= 4x + 16z – 19y + 14z – 16x

= (4x – 16x) – 19y + (16z + 14z)

= – 12x – 19y + 30z

 

∴ (4x + 16z) – (19y – 14z + 16x) = – 12x – 19y + 30z

Practice Set 35

1. Multiply.

(i) 16xy × 18xy 

Solution: 

16xy × 18xy

= 16 × 18 × xy × xy

= 288x²y²

 

∴ 16xy × 18xy = 288x²y²

 

(ii) 23xy² × 4yz²

Solution: 

23xy² × 4yz²

= 23 × 4 × xy² × yz²

= 92xy³z²

 

∴ 23xy² × 4yz² = 92xy³z²

 

(iii) (12a + 17b) × 4c 

Solution: 

(12a + 17b) × 4c 

= 12a × 4c + 17b × 4c

= 48ac + 68bc

 

∴ (12a + 17b) × 4c = 48ac + 68bc

 

(iv) (4x + 5y) × (9x + 7y) 

Solution: 

(4x + 5y) × (9x + 7y)

= 4x × (9x + 7y) + 5y × (9x + 7y)

= (4x × 9x) + (4x × 7y) + (5y × 9x) + (5y × 7y)

= 36x² + 28xy + 45xy + 35y²

= 36x² + 73xy + 35y²

 

∴ (4x + 5y) × (9x + 7y) = 36x² + 73xy + 35y²

 

2. A rectangle is (8x + 5) cm long and (5x + 3) cm broad. Find its area.

Solution: 

Length of the rectangle = (8x + 5) cm

Breadth of the rectangle = (5x + 3) cm

 

∴ Area of the rectangle 

= length × breadth

= (8x + 5) × (5x + 3)

= 8x × (5x + 3) + 5 × (5x + 3)

= (8x × 5x) + (8x × 3) + (5 × 5x) + (5 × 3)

= 40x² + 24x + 25x + 15

= 40x² + 49x + 15

 

Ans: The area of the rectangle is (40x² + 49x + 15) sq. cm.

Practice Set 36

1. Simplify (3x – 11y) – (17x + 13y) and choose the right answer.

(i) 7x – 12y 

(ii) – 14x – 54y 

(iii) – 3 (5x + 4y) 

(iv) – 2 (7x + 12y)

 

Ans: Option (D) : – 2 (7x + 12y)

 

Solution: 

(3x – 11y) – (17x + 13y) 

= 3x – 11y – 17x – 13y

= – 14x – 24y

= – 2 × 7x – 2 × 12y

= – 2(7x + 12y)

 

2. The product of (23 x²y³z) and (– 15 x³yz²) is ______.

(i) – 345 x⁵y⁴z³

(ii) 345 x²y³z⁵

(iii) 145 x³y²z 

(iv) 170 x³y²z³

 

Ans: Option (A) : – 345 x⁵y⁴z³

 

Solution: 

(23 x²y³z) × (– 15 x³yz²) 

= 23 × (– 15) × x² × y³ × z × x³ × y × z² 

= – 345x⁵y⁴z³

3. Solve the following equations.

(i) 4x + 12 = 92 

Solution: 

4x + \(\large \frac {1}{2}\) = \(\large \frac {9}{2}\)

∴ 4x = \(\large \frac {9}{2}\) – \(\large \frac {1}{2}\)

∴ 4x = \(\large \frac {9\,–\,1}{2}\)

∴ 4x = \(\large \frac {8}{2}\)

∴ 4x = 4

∴ x = \(\large \frac {4}{4}\)

∴ x = 1

 

(ii) 10 = 2y + 5 

Solution: 

10 = 2y + 5 

∴ 2y + 5 = 10

∴ 2y = 10 – 5

∴ 2y = 5

∴ y = \(\large \frac {5}{2}\)

 

(iii) 5m – 4 = 1 

Solution: 

5m – 4 = 1

∴ 5m = 1 + 4

∴ 5m = 5

∴ m = \(\large \frac {5}{5}\)

∴ m = 1

 

(iv) 6x – 1 = 3x + 8 

Solution: 

6x – 1 = 3x + 8

∴ 6x – 1 = 3x + 8

∴ 6x – 3x = 8 + 1

∴ 3x = 9

∴ x = \(\large \frac {9}{3}\)

∴ x = 3

 

(v) 2 (x – 4) = 4x + 2 

Solution: 

2 (x – 4) = 4x + 2 

∴ 2x – 8 = 4x + 2 

∴ 2x – 4x = 2 + 8 

∴ – 2x = 10

∴ x = \(\large \frac {10}{–\,5}\)

∴ x = – 2

 

(vi) 5 (x + 1) = 74

Solution: 

5 (x + 1) = 74

∴ 5x + 5 = 74

∴ 5x = 74 – 5

∴ 5x = 69

∴ x = \(\large \frac {69}{5}\)

4. Rakesh’s age is less than Sania’s age by 5 years. The sum of their ages is 27 years. How old are they?

Solution: 

Let the age of Rakesh be x years.

∴ Sania’s age = (x + 5) years.

 

According to the given condition,

x + (x + 5) = 27

∴ 2x + 5 = 27

∴ 2x = 27 – 5

∴ 2x = 22

∴ x = \(\large \frac {22}{11}\)

∴ x = 11

 

Sania’s age

= x + 5 

= 11 + 5 

= 16 years

 

Ans: The ages of Rakesh and Sania are 11 years and 16 years respectively.

 

5. When planting a forest, the number of jambhul trees planted was greater than the number of ashoka trees by 60. If there are altogether 200 trees of these two types, how many jambhul trees were planted?

Solution: 

Let the number of jambhul trees planted be x.

∴ Number of ashoka trees = x – 60

 

According to the given condition, 

x + x – 60 = 200

∴ 2x = 200 + 60

∴ 2x = 260

∴ x = \(\large \frac {260}{2}\)

∴ x = 130

 

Ans: 130 jambhul trees were planted.

 

6. Shubhangi has twice as many 20 rupee notes as she has 50 rupee notes. Altogether, she has 2700 rupees. How many 50 rupee notes does she have?

Solution: 

Let the number of 50-rupee notes with Shubhangi be x.

∴ Number of 20 rupee notes = 2x

 

According to the given condition

x × 50 + 2x × 20 = 2700

∴ 50x + 40x = 2700

∴ 90x = 2700

∴ x = \(\large \frac {2700}{90}\)

∴ x = 30

 

Ans: Shubhangi has 30 notes of 50 rupees.

 

7. Virat made twice as many runs as Rohit. The total of their scores is 2 less than a double century. How many runs did each of them make?

Solution: 

Let the runs made by Rohit be x.

∴ Runs made by Virat = 2x

 

According to the given condition,

x + 2x = 200 – 2

∴ 3x = 198

∴ x = \(\large \frac {198}{3}\) 

∴ x = 66

 

Runs made by Virat 

= 2x 

= 2 × 66 

= 132

 

Ans: The runs made by Virat and Rohit are 132 and 66 respectively.