Maharashtra Board Textbook Solutions for Standard Eight

Chapter 3 – Indices and Cube Roots

Practice set 3.1

1. Express the following numbers in index form.

(1) Fifth root of 13 

Ans: \((13)^{\frac{1}{5}}\)

 

(2) Sixth root of 9 

Ans: \((9)^{\frac{1}{6}}\)

 

(3) Square root of 256 

Ans: \((256)^{\frac{1}{2}}\)

 

(4) Cube root of 17 

Ans: \((17)^{\frac{1}{3}}\)

 

(5) Eighth root of 100 

Ans: \((100)^{\frac{1}{8}}\)

 

(6) Seventh root of 30

Ans: \((30)^{\frac{1}{7}}\)

2. Write in the form ‘nth root of a’ in each of the following numbers.

(1) \((81)^{\frac{1}{4}}\)

Ans: Fourth root of 81.

 

(2) \((49)^{\frac{1}{2}}\)

Ans: Square root of 49.

 

(3) \((15)^{\frac{1}{5}}\)

Ans: Fifth root of 15.

 

(4) \((512)^{\frac{1}{9}}\)

Ans: Ninth root of 512.

 

(5) \((100)^{\frac{1}{19}}\)

Ans: Nineteenth root of 100.

 

(6) \((6)^{\frac{1}{7}}\)

Ans: Seventh root of 6.

Practice set 3.2

1. Complete the following table.

IMG 20231009 034042 Chapter 3 – Indices and Cube Roots

Ans:

3.2 chapter 3 Chapter 3 – Indices and Cube Roots

2. Write the following numbers in the form of rational indices.

(1) Square root of 5th power of 121. 

Ans: \((121)^{\frac{5}{2}}\)

 

(2) Cube of 4th root of 324

Ans: \((324)^{\frac{4}{3}}\)

 

(3) 5th root of square of 264 

Ans: \((264)^{\frac{5}{2}}\)

 

(4) Cube of cube root of 3

Ans: \((3)^{\frac{3}{3}}\)

Practice set 3.3

1. Find the cube roots of the following numbers.

(1) 8000 

Solution: 

8000

= 2 × 2 × 2 × 10 × 10 × 10

= (2 × 10) × (2 × 10) × (2 × 10)

= (2 × 10)³

= 20³

 

∴ \(\sqrt[3]{8000}\) = 20

(2) 729 

Solution: 

729

= (3 × 3) × (3 × 3) × (3 × 3)

= (3 × 3)³

= 9³

 

∴ \(\sqrt[3]{729}\) = 9

 

(3) 343 

Solution: 

343

= 7 × 7 × 7

= 7³

 

∴ ∴ \(\sqrt[3]{343}\) = 7

 

(4) – 512 

Solution: 

512

= 2 × 2 × 2 × 4 × 4 × 4

= (2 × 4) × (2 × 4) × (2 × 4)

= (2 × 4)³

= 8³

 

∴ – 512 

= (– 8) × (– 8) × (– 8)

= (– 8)³

 

∴ \(\sqrt[3]{–\,512}\) = − 8

 

(5) – 2744 

Solution: 

2744

= 2 × 2 × 2 × 7 × 7 × 7

= (2 × 7) × (2 × 7) × (2 × 7)

= (2 × 7)³

= 14³

 

∴ – 2744 

= (– 14) × (– 14) × (– 14)

= (– 14)³

 

∴ ∴ \(\sqrt[3]{–\,2744}\) = − 14

 

(6) 32768

Solution: 

32768

= 2 × 2 × 2 × 4 × 4 × 4 × 4 × 4 × 4

= (2 × 4 × 4) × (2 × 4 × 4) × (2 × 4 × 4)

= (2 × 4 × 4)³

= 32³

 

∴ \(\sqrt[3]\,–\,32768}\) = \(\large \frac {3}{5}\)

2. Simplify : 

(1) \(\sqrt[3]{\frac{27}{125}}\)

Solution:

\(\sqrt[3]\frac{27}{125}}\)

= \(\large {\frac{\sqrt[3]27}{\sqrt[3]125}}\)

= \(\large {\frac{\sqrt[3]3\,×\,3\,×\,3}{\sqrt[3]5\,×\,5\,×\,5}}\)

= \(\large {\frac{\sqrt[3]3³}{\sqrt[3]5³}}\)

= \(\large {\frac{3}{5}\)

 

∴ \(\sqrt[3]\frac{27}{125}}\) =  \(\large {\frac{3}{5}\)

 

(2) \(\sqrt[3]\frac{16}{54}}\)

Solution: 

\(\sqrt[3]\frac{16}{54}}\)

= \(\large {\frac{\sqrt[3]8\,×\,2}{\sqrt[3]27\,×\,2}}\)

= \(\large {\frac{\sqrt[3]8}{\sqrt[3]27}}\)

 

= \(\large {\frac{\sqrt[3]2\,×\,2\,×\,2}{\sqrt[3]3\,×\,3\,×\,3}}\)

= \(\large {\frac{\sqrt[3]2³}{\sqrt[3]3³}}\)

= \(\large {\frac{2}{3}\)

 

∴ \(\sqrt[3]\frac{16}{54}}\) =  \(\large {\frac{2}{3}\)

 

3. If \(\sqrt[3]{729}\) = 9 then \(\sqrt[3]{0.000729}\) = ?

Solution: 

\(\sqrt[3]{0.000729}\)

= \(\sqrt[3]\frac{729}{1000000}}\)

= \(\large {\frac[3]{9³}{\sqrt[3]100³}}\)

= \(\large {\frac{\sqrt[3]9}{\sqrt[3]100}}\)

= 0.09

 

∴ \(\sqrt[3]{0.000729}\) = 0.09