Maharashtra Board Textbook Solutions for Standard Eight

Chapter 2 - Parallel lines and transversals

Practice set 2.1

1. In the adjoining figure, each angle is shown by a letter. Fill in the boxes with the help of the figure.

IMG 20230805 074611 Chapter 2 – Parallel lines and transversals

Corresponding angles.

(1) ∠p and □

Ans: ∠w

 

(2) ∠q and □

Ans: ∠x

 

(3) ∠r and □

Ans: ∠y

 

(4) ∠s and □

Ans: ∠z

 

Interior alternate angles.

(5) ∠s and □

Ans: ∠x

 

(6) ∠w and □

Ans: ∠r

2. Observe the angles shown in the figure and write the following pair of angles.

IMG 20230805 074623 Chapter 2 – Parallel lines and transversals

(1) Interior alternate angles

Ans: 

∠c and ∠e

∠b and ∠h

 

(2) Corresponding angles

Ans: 

∠a and ∠e

∠b and ∠f

∠c and ∠g

∠d and ∠h

 

(3) Interior angles

Ans: 

∠c and ∠h

∠b and ∠e

Practice set 2.2

1. Choose the correct alternative.

(1) In the adjoining figure, if line m || line n and line p is a transversal then find x.

(A) 135°
(B) 90°
(C) 45°
(D) 40°

IMG 20230805 074857 Chapter 2 – Parallel lines and transversals

Ans: Option (C) : 45°

 

Solution:

IMG 20230805 082704 Chapter 2 – Parallel lines and transversals

line m || line n and line p is a transversal

m∠BFG + m∠FGD = 180° …[Interior angles]

∴ 3x + x = 180°

∴ 4x = 180°

∴ x = \(\large \frac {180}{4}\)

∴ x = 45°

(2) In the adjoining figure, if line a || line b and line l is a transversal then find x.

(A) 90° 

(B) 60° 

(C) 45° 

(D) 30°

IMG 20230805 074913 Chapter 2 – Parallel lines and transversals

Ans: Option (D) : 30°

 

Solution:

13 20230805 081158 0001 1 Chapter 2 – Parallel lines and transversals

line a || line b and line l is a transversal.

m∠UVS ≅ m∠PUV …[Alternate angles]

∵ m∠PUV = 4x

∵ m∠UVS = 4x

m∠UVS + m∠WVS = 180° …[Angles in a linear pair]

∴ 4x + 2x = 180°

∴ 6x = 180°

∴ x = \(\large \frac {180}{6}\)

∴ x = 30°

2. In the adjoining figure line p || line q. Line t and line s are transversals. Find measure of ∠x and ∠y using the measures of angles given in the figure.

IMG 20230805 074927 Chapter 2 – Parallel lines and transversals

Solution:

14 20230805 081158 0002 2 Chapter 2 – Parallel lines and transversals

Consider ∠z as shown in figure.

line p || line q and line t is a transversal.

∴ m∠z = 40° …(i) [Corresponding angles]

 

m∠x + m∠z = 180° …[Angles in a linear pair]

∴ m∠x + 40⁰ = 180° …[From(i)]

∴ m∠x = 180° – 40°

∴ m∠x = 140°

 

Consider ∠w as shown in the figure.

m∠w + 70° = 180° …[Angles in a linear pair]

∴ m∠w = 180° – 70°

∴ m∠w = 110° …(ii)

 

line p || line q and line s is a transversal.

m∠y ≅ m∠w …[Alternate angles]

∵ m∠w = 110° 

∴ m∠y =110° …[From (ii)]

 

Ans: The value of m∠x is 140° and m∠y is 110°.

3. In the adjoining figure. line p || line q. line l || line m. Find measures of ∠a, ∠b, and ∠c, using the measures of given angles. Justify your answers.

IMG 20230805 074936 Chapter 2 – Parallel lines and transversals

Solution:

line p || line q and line l is a transversal

m∠a + 80° = 180° …[Interior angles]

∴ m∠a= 180° – 80°

∴ m∠a= 100°

 

line l || line m and line p is a transversal

∴ m∠c = 80° …(i) [Exterior alternate angles]

 

line p || line q and line m is a transversal.

m∠b ≅ m∠c …[Corresponding angles]

m∠c = 80°

∴ m∠b = 80° …[From (i)]

 

Ans: The values are;

m∠a = 100°

m∠b = 80°

m∠c = 80°

4. In the adjoining figure, line a || line b. line l is a transversal. Find the measures of ∠ x, ∠ y, ∠ z using the given information.

IMG 20230805 074946 Chapter 2 – Parallel lines and transversals

Solution:

line a || line b and line l is a transversal.

∴ m∠x = 105° …(i) [Corresponding angles]

 

m∠y = m∠x …[Vertically opposite angles]

∴ m∠y = 105° …[From (i)]

 

m∠z + 105° = 180° …[Angles in a linear pair]

∴ m∠z = 180° – 105°

∴ m∠z = 75°

 

Ans: The values are;

m∠x = 105°

m∠y = 105°

m∠z = 75°

5. In the adjoining figure, line p || line l || line q. Find ∠ x with the help of the measures given in the figure.

IMG 20230805 074958 Chapter 2 – Parallel lines and transversals

Solution:

IMG 20230805 151841 1 Chapter 2 – Parallel lines and transversals

line p || line l and line IJ is a transversal.

m∠IJN = m∠JIH …[Alternate angles]

∴ m∠IJN = 40° …(i)

 

line l || line q and line MJ is a transversal.

m∠MJN = m∠JMK …[Alternate angles]

∴ m∠MJN = 30° …(ii)

 

Now, 

m∠x = m∠IJN + m∠MJN …[Angle addition property]

∴ m∠x = 40° + 30° …[From (i) and (ii)]

∴ m∠x = 70°

 

Ans: The measure of m∠x = 70°