Maharashtra Board Textbook Solutions for Standard Ten

Chapter 5 – Co-ordinate Geometry

Practice set 5.1

1. Find the distance between each of the following pairs of points. 

(1) A(2, 3), B(4, 1) 

Solution:

A(2, 3) = (x₁, y₁) 

B(4, 1) = (x₂, y₂)

 

By distance formula,

d(A, B) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(A, B) = \(\sqrt{(4\,–\,2)^2\,+\,(1\,–\,3)^2}\)

∴ d(A, B) = \(\sqrt{(2)^2\,+\,(–\,2)^2}\)

∴ d(A, B) = \(\sqrt{4\,+\,4}\)

∴ d(A, B) = \(\sqrt{2(4)}\)

∴ d(A, B) = 2\(\sqrt{2}\) units

 

Ans: d(A, B) = 2\(\sqrt{2}\) units

(2) P(– 5, 7), Q(– 1, 3) 

Solution:

P(–5, 7) = (x₁, y₁) 

Q(–1, 3) = (x₂, y₂)

 

By distance formula,

d(P, Q) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(P, Q) = \(\sqrt{[–\,1\,–\,(–\,5)]^2\,+\,(3\,–\,7)^2}\)

∴ d(P, Q) = \(\sqrt{(–\,1\,+\,5)^2\,+\,(–\,4)^2}\)

∴ d(P, Q) = \(\sqrt{(4)^2\,+\,16}\)

∴ d(P, Q) = \(\sqrt{16\,+\,16}\)

∴ d(P, Q) = \(\sqrt{2(16)}\)

∴ d(P, Q) = 4\(\sqrt{2}\) units

 

Ans: d(P, Q) = 4\(\sqrt{2}\) units

(3) R(0, – 3), S\(\large(\)0, \(\large \frac {5}{2})\)

Solution:

R(0, –3) = (x₁, y₁) 

S\(\large(\)0, \(\large \frac {5}{2})\) = (x₂, y₂)

 

By distance formula,

d(R, S) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(R, S) = \(\sqrt{(0\,–\,0)^2\,+\,\large (\frac {5}{2}\,–\,\small(–\,3))^{2}}\)

∴ d(R, S) = \(\sqrt{(0)^2\,+\,\large (\frac {5}{2}\,+\small\,3)^{2}}\)

∴ d(R, S) = \(\sqrt{0\,+\,\large (\frac {11}{2})^{2}}\)

∴ d(R, S) = \(\sqrt{\large (\frac {11}{2})^{2}}\)

∴ d(R, S) = \(\large \frac {5}{2}\)

 

Ans: d(R, S) = \(\large \frac {5}{2}\) units.

(4) L(5, – 8), M(– 7, – 3) 

Solution:

L(5, – 8) = (x₁, y₁) 

M(– 7, – 3) = (x₂, y₂)

 

By distance formula,

d(L, M) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(L, M) = \(\sqrt{(4\,–\,2)^2\,+\,(1\,–\,3)^2}\)

∴ d(L, M) = \(\sqrt{(2)^2\,+\,(–\,2)^2}\)

∴ d(L, M) = \(\sqrt{4\,+\,4}\)

∴ d(L, M) = \(\sqrt{2(4)}\)

∴ d(L, M) = 2\(\sqrt{2}\) units

 

Ans: d(L, M) = 2\(\sqrt{2}\) units

(5) T(– 3, 6), R(9, – 10) 

Solution:

T(– 3, 6) = (x₁, y₁) 

R(9, – 10) = (x₂, y₂)

 

By distance formula,

d(T, R) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(T, R) = \(\sqrt{(9\,–\,(–\,3))^2\,+\,((–\,10)\,–\,6)^2}\)

∴ d(T, R) = \(\sqrt{(9\,+\,3)^2\,+\,(–\,10\,–\,6)^2}\)

∴ d(T, R) = \(\sqrt{(12)^2\,+\,(–\,16)^2}\)

∴ d(T, R) = \(\sqrt{144\,+\,256}\)

∴ d(T, R) = \(\sqrt{400}\)

∴ d(T, R) = 20 units

 

Ans: d(T, R) = 20 units

(6) W\(\large (\frac {–\,7}{2}\) , 4), X(11, 4)

Solution:

W\(\large (\frac {–\,7}{2}\) , 4) = (x₁, y₁) 

X(11, 4) = (x₂, y₂)

 

By distance formula,

d(W, X) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(W, X) = \(\sqrt{(11\,–\,(\large \frac {–\,7}{2}))^2\,+\,\small (4\,–\,4)^2}\)

∴ d(W, X) = \(\sqrt{(11\,+\,\large \frac {7}{2})^2+\,\small (0)^2}\)

∴ d(W, X) = \(\sqrt{\large (\frac {11\,×\,2\,+\,7}{2})^2}\)

∴ d(W, X) = \(\sqrt{\large (\frac {22\,+\,7}{2})^2}\)

∴ d(W, X) = \(\sqrt{\large (\frac {29}{2})^2}\)

∴ d(W, X) = \(\large \frac {29}{2}\) units

 

Ans: d(W, X) = \(\large \frac {29}{2}\) units

2. Determine whether the points are collinear.

(1) A(1, – 3), B(2, – 5), C(– 4, 7) 

Solution:

A(1, – 3) = (x₁, y₁) 

B(2, – 5) = (x₂, y₂)

C(– 4, 7) = (x₃, y₃)

 

Slope of line AB 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {–\,5\,–\,(–\,3)}{2\,–\,1}\)

= \(\large \frac {–\,5\,+\,3}{1}\)

= – 2 …(i)

 

Slope of line BC 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {7\,–\,(–\,5)}{–\,4\,–\,2}\)

= \(\large \frac {7\,+\,5}{–\,6}\)

= \(\large \frac {12}{–\,6}\)

= – 2 …(i)

 

∴ Slope of line AB = Slope of line BC …[From (i) and (ii)]

Line AB and line BC have equal slopes and have a common point B.

 

∴ Points A, B and C are collinear.

(2) L(– 2, 3), M(1, – 3), N(5, 4)

Solution:

L(– 2, 3) = (x₁, y₁) 

M(1, – 3) = (x₂, y₂)

N(5, 4) = (x₃, y₃)

 

Slope of line LM 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {–\,3\,–\,3}{1\,–\,(–\,2)}\)

= \(\large \frac {–\,6}{1\,+\,2}\)

= \(\large \frac {–\,6}{3}\)

= – 2 …(i)

 

Slope of line MN 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {4\,–\,(–\,3)}{5\,–\,1}\)

= \(\large \frac {4\,+\,3}{4}\)

= \(\large \frac {7}{4}\) …(ii)

 

∴ Slope of line LM ≠ Slope of line MN …[From (i) and (ii)]

Line LM and line MN have equal slopes and have a common point M.

 

∴ Points L, M and N are collinear.

(3) R(0, 3), D(2, 1), S(3, – 1) 

Solution:

R(0, 3) = (x₁, y₁) 

D(2, 1) = (x₂, y₂)

S(3, – 1) = (x₃, y₃)

 

Slope of line RD 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {1\,–\,3}{2\,–\,0}\)

= \(\large \frac {–\,2}{2}\)

= – 1 …(i)

 

Slope of line DS 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {–\,1\,–\,1}{3\,–\,2}\)

= \(\large \frac {–\,2}{1}\)

= – 2 …(i)

 

∴ Slope of line RD = Slope of line DS …[From (i) and (ii)]

Line RD and line DS have equal slopes and have a common point D.

 

∴ Points R, D and S are collinear.

(4) P(– 2, 3), Q(1, 2), R(4, 1)

Solution:

P(– 2, 3) = (x₁, y₁) 

Q(1, 2) = (x₂, y₂)

R(4, 1) = (x₃, y₃)

 

Slope of line PQ 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {2\,–\,3}{1\,–\,(–\,2)}\)

= \(\large \frac {–\,1}{1\,+\,2}\)

= \(\large \frac {–\,1}{3}\) …(i)

 

Slope of line QR 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {1\,–\,2}{4\,–\,1}\)

= \(\large \frac {–\,1}{–\,3}\) …(ii)

 

∴ Slope of line PQ = Slope of line QR …[From (i) and (ii)]

Line PQ and line QR have equal slopes and have a common point Q.

 

∴ Points P, Q and R are collinear.

3. Find the point on the X – axis which is equidistant from A(– 3, 4) and B(1, – 4).

Solution:

Let P(x, 0) be a point on the X axis which is equidistant from A(– 3, 4) and B(1, – 4).

d(P, A) = d(P, B) 

 

By distance formula,

\(\sqrt{[x\,–\,(–\,3)]^2\,+\,(0\,–\,4)^2}\) = \(\sqrt{(x\,–\,1)^2\,+\,[0\,–\,(–\,4)]^2}\)

∴ \(\sqrt{(x\,+\,3)^2\,+\,(–\,4)^2}\) = \(\sqrt{(x\,–\,1)^2\,+\,(0\,+\,4)^2}\)

∴ \(\sqrt{(x\,+\,3)^2\,+\,(–\,4)^2}\) = \(\sqrt{(x\,–\,1)^2\,+\,(4)^2}\)

 

Squaring both the sides we get,

(x + 3)² + 16 = (x – 1)² + 16

∴ x² + 6x + 9 = x² – 2x + 1

∴ x² + 6x – x² + 2x = 1 – 9

∴ 8x = – 8

∴ x = – 1

 

Ans: P(– 1, 0) is the required point.

4. Verify that points P(– 2, 2), Q(2, 2) and R(2, 7) are vertices of a right angled triangle.

Solution:

P(–2, 2), Q(2, 2) and R(2, 7) be the vertices of a triangle

 

Using distance formula,

d(P, Q) = \(\sqrt{(–\,2\,–\,2)^2\,+\,(2\,–\,2)^2}\)

∴ d(P, Q) = \(\sqrt{(–\,4)^2\,+\,(0)^2}\)

∴ d(P, Q) = \(\sqrt{16}\)

∴ d(P, Q) = 4 units

 

d(Q, R) = \(\sqrt{(2\,–\,2)^2\,+\,(2\,–\,7)^2}\)

∴ d(Q, R) = \(\sqrt{(0)^2\,+\,(–\,5)^2}\)

∴ d(Q, R) = \(\sqrt{5^2}\)

∴ d(Q, R) = 5 units

 

∴ d(P, R) = \(\sqrt{(–\,2\,–\,2)^2\,+\,(2\,–\,7)^2}\)

∴ d(P, R) = \(\sqrt{(–\,4)^2\,+\,(–\,5)^2}\)

∴ d(P, R) = \(\sqrt{16\,+\,25}\)

∴ d(P, R) = \(\sqrt{41}\) units

∴ PR² = 41 …(i)

 

PQ² + QR² = 4² + 5²

∴ PQ² + QR² = 16 + 25 

∴ PQ² + QR² = 41 …(ii)

 

∴ PR² = PQ² + QR² …[From (i) and (ii)]

∴ ∆PQR is a right angled triangle …[Converse of Pythagoras theorem]

 

Hence proved.

5. Show that points P(2, – 2), Q(7, 3), R(11, – 1) and S (6, – 6) are vertices of a parallelogram.

Solution:

IMG 20231228 165843 Chapter 5 – Co-ordinate Geometry

Let M (x₁, y₁) be the midpoint of diagonal PR. 

By midpoint formula,

 

x₁ = \(\large \frac {2\,+\,11}{2}\)

x₁ = \(\large \frac {13}{2}\)

 

y₁ = \(\large \frac {–\,2\,–\,1}{2}\)

y₁ = \(\large \frac {–\,3}{2}\)

 

M \(\large (\frac {13}{2}\) , \(\large \frac {–\,3}{2})\) is the midpoint of diagonal PR …(i)

 

Let N(x₂, y₂) be the midpoint of diagonal QS.

By midpoint formula,

 

x₂ = \(\large \frac {7\,+\,6}{2}\)

x₂ = \(\large \frac {13}{2}\)

 

y₂ = \(\large \frac {3\,+\,(–\,6)}{2}\)

y₂ = \(\large \frac {–\,3}{2}\)

 

N \(\large (\frac {13}{2}\) , \(\large \frac {–\,3}{2})\) is the midpoint of diagonal QS …(ii)

 

Midpoint of diagonal PR and diagonal QS is the same i.e. Diagonals PR and QS bisect each other.

 

∴ PQRS is a parallelogram …[A quadrilateral is a parallelogram if its diagonals bisect each other]

 

Hence proved.

6. Show that points A(– 4, – 7), B(– 1, 2), C(8, 5) and D(5, – 4) are vertices of a rhombus ABCD.

Solution:

A(– 4, – 7), B(– 1, 2), C(8, 5) and D(5, – 4) are the vertical it a quadrilateral

 

By distance formula,

d(A, B) = \(\sqrt{[–\,4\,–\,(–\,1)]^2\,+\,(7\,–\,2)^2}\)

∴ d(A, B) = \(\sqrt{(–\,3)^2\,+\,(–\,9)^2}\)

∴ d(A, B) = \(\sqrt{9\,+\,81}\)

∴ d(A, B) = \(\sqrt{90}\) units …(i)

 

d(B, C) = \(\sqrt{(–\,1\,–\,8)^2\,+\,(2\,–\,5)^2}\)

∴ d(B, C) = \(\sqrt{(–\,9)^2\,+\,(–\,3)^2}\)

∴ d(B, C) = \(\sqrt{81\,+\,9}\)

∴ d(B, C) = \(\sqrt{90}\) units …(ii)

 

d(C, D) = \(\sqrt{(8\,–\,5)^2\,+\,[5\,–\,(–\,4)]^2}\)

∴ d(C, D) = \(\sqrt{(–\,3)^2\,+\,(5\,+\,4)^2}\)

∴ d(C, D) = \(\sqrt{9\,+\,9^2}\)

∴ d(C, D) = \(\sqrt{9\,+\,81}\)

∴ d(C, D) = \(\sqrt{90}\) units …(iii)

 

d(A, D) = \(\sqrt{(–\,4\,–\,5)^2\,+\,[–\,7\,–\,(–\,4)]^2}\)

∴ d(A, D) = \(\sqrt{(–\,9)^2\,+\,(–\,3)^2}\)

∴ d(A, D) = \(\sqrt{81\,+\,9}\)

∴ d(A, D) = \(\sqrt{90}\) units …(iv)

 

∴  AB = BC = CD = AD …[From (i), (ii), (iii) and (iv)]

∴ ABCD is a rhombus. …[By Definition]

 

Hence proved.

7. Find x if the distance between points L(x, 7) and M(1, 15) is 10.

Solution:

L(x, 7) and M(1, 15)

 

By distance formula,

d(L, M) = \(\sqrt{[(x\,–\,1)^2\,+\,(7\,–\,15)]^2}\)

∴ 10 = \(\sqrt{[(x\,–\,1)^2\,+\,(–\,8)]^2}\)

Squaring both the sides we get,

100 = (x – 1)² + 64

∴ 100 – 64 = (x – 1)²

∴ (x – 1)² = 36

∴ x – 1 = ± 6 …[Taking square roots]

∴ x – 1 = 6 or x – 1 = – 6

∴ x = 6 + 1 or x = – 6 + 1

∴ x = 7 or x = – 5

 

Ans: x = 7 or x = – 5

8. Show that the points A(1, 2), B(1, 6), C(1 + 2\(\sqrt{3}\), 4) are vertices of an equilateral triangle.

Solution:

A(1, 2), B(1, 6) and C(1 + 2\(\sqrt{3}\) be the vertices of triangle

 

Using distance formula,

d(A, B) = \(\sqrt{(1\,–\,1)^2\,+\,(2\,–\,6)^2}\)

∴ d(A, B) = \(\sqrt{(0)^2\,+\,(–\,4)^2}\)

∴ d(A, B) = \(\sqrt{0\,+\,16}\)

∴ d(A, B) = \(\sqrt{16}\)

∴ d(A, B) = 4 units …(i)

 

d(B, C) = \(\sqrt{(1\,+\,2\sqrt{3}\,–\,1)^2\,+\,(4\,–\,6)^2}\)

∴ d(B, C) = \(\sqrt{(2\sqrt{3})^2\,+\,(–\,2)^2}\)

∴ d(B, C) = \(\sqrt{12\,+\,4}\)

∴ d(B, C) = \(\sqrt{16}\)

∴ d(B, C) = 4 units …(ii)

 

d(A, C) = \(\sqrt{(1\,+\,2\sqrt{3}\,–\,1)^2\,+\,(4\,–\,2)^2}\)

∴ d(A, C) = \(\sqrt{(2\sqrt{3})^2\,+\,(2)^2}\)

∴ d(A, C) = \(\sqrt{12\,+\,4}\)

∴ d(A, C) = \(\sqrt{16}\)

∴ d(A, C) = 4 units …(iii)

 

∴ d(A, C) = 4 units …(iii)

∴ AB = BC = AC …[From (i), (ii) and (iii)]

∴ ∆ABC is an equilateral triangle …[By Definition]

 

Hence proved.

Practice set 5.2

1. Find the coordinates of point P if P divides the line segment joining the points A(– 1, 7) and B(4, – 3) in the ratio 2 : 3.

Solution:

P(x, y) divides seg AB in the ratio 2 : 3.

A(– 1, 7) = (x₁, y₁) 

B(4, – 3) = (x₂, y₂)

m : n = 2 : 3

By Section formula,

 

x = \(\large \frac {mx₂\,+\,nx₁}{m\,+\,n}\)

∴ x = \(\large \frac {2(4)\,+\,3(–\,1)}{2\,+\,3}\)

∴ x = \(\large \frac {8\,–\,3}{5}\)

∴ x = \(\large \frac {5}{5}\)

∴ x = 1

 

y = \(\large \frac {my₂\,+\,ny₁}{m\,+\,n}\)

∴ y = \(\large \frac {2(–\,3)\,+\,3(7)}{2\,+\,3}\)

∴ y = \(\large \frac {–\,6\,+\,21}{5}\)

∴ y = \(\large \frac {15}{5}\)

∴ y = 3

 

Ans: The coordinates of point P are (1, 3).

2. In each of the following examples find the co – ordinates of point A which divides segment PQ in the ratio a : b.

(1) P(– 3, 7), Q(1, – 4), a : b = 2 : 1

Solution:

A(x, y) divides seg PQ in the ratio 2 : 1.

P(– 3, 7) = (x₁, y₁) 

Q(1, – 4) = (x₂, y₂)

a : b = 2 : 1 = m : n

By Section formula,

 

x = \(\large \frac {mx₂\,+\,nx₁}{m\,+\,n}\)

∴ x = \(\large \frac {2(1)\,+\,1(–\,3)}{2\,+\,1}\)

∴ x = \(\large \frac {2\,–\,3}{3}\)

∴ x = \(\large \frac {–\,1}{3}\)

 

y = \(\large \frac {my₂\,+\,ny₁}{m\,+\,n}\)

∴ y = \(\large \frac {2(–\,4)\,+\,1(7)}{2\,+\,1}\)

∴ y = \(\large \frac {–\,8\,+\,7}{3}\)

∴ y = \(\large \frac {–\,1}{3}\)

 

Ans: The coordinates of point A are \(\large (\frac {–\,1}{3}\), \(\large \frac {–\,1}{3})\).

(2) P(– 2, – 5), Q(4, 3), a : b = 3 : 4

Solution:

A(x, y) divides seg PQ in the ratio 3 : 4.

P(– 2, – 5) = (x₁, y₁) 

Q(4, 3) = (x₂, y₂)

a : b = 3 : 4 = m : n

By Section formula,

 

x = \(\large \frac {mx₂\,+\,nx₁}{m\,+\,n}\)

∴ x = \(\large \frac {3(4)\,+\,4(–\,2)}{3\,+\,4}\)

∴ x = \(\large \frac {12\,–\,8}{7}\)

∴ x = \(\large \frac {4}{7}\)

 

y = \(\large \frac {my₂\,+\,ny₁}{m\,+\,n}\)

∴ y = \(\large \frac {3(3)\,+\,4(–\,5)}{3\,+\,4}\)

∴ y = \(\large \frac {9\,–\,20}{7}\)

∴ y = \(\large \frac {–\,11}{7}\)

 

Ans: The coordinates of point A are \(\large (\frac {4}{7}\), \(\large \frac {–\,11}{7})\).

(3) P(2, 6), Q(– 4, 1), a : b = 1 : 2

Solution:

A(x, y) divides seg PQ in the ratio 1 : 2.

P(2, 6) = (x₁, y₁) 

Q(– 4, 1) = (x₂, y₂)

a : b = 1 : 2 = m : n

By Section formula,

 

x = \(\large \frac {mx₂\,+\,nx₁}{m\,+\,n}\)

∴ x = \(\large \frac {1(–\,4)\,+\,2(2)}{1\,+\,2}\)

∴ x = \(\large \frac {–\,4\,+\,4}{3}\)

∴ x = \(\large \frac {0}{3}\)

∴ x = 0

 

y = \(\large \frac {my₂\,+\,ny₁}{m\,+\,n}\)

∴ y = \(\large \frac {1(1)\,+\,2(6)}{1\,+\,2}\)

∴ y = \(\large \frac {1\,+\,12}{3}\)

∴ y = \(\large \frac {13}{3}\)

 

Ans: The coordinates of point A are \(\large (\)0, \(\large \frac {13}{3})\).

3. Find the ratio in which point T(– 1, 6) divides the line segment joining the points P(– 3, 10) and Q(6, – 8).

Solution:

Let point T divides seg PQ in the ratio m : n.

T(– 1, 6) = (x, y)

P(– 3, 10) = (x₁, y₁)

Q(6, – 8) = (x₂, y₂)

By Section formula,

 

x = \(\large \frac {mx₂\,+\,nx₁}{m\,+\,n}\)

∴ – 1 = \(\large \frac {m(6)\,+\,n(–\,3)}{m\,+\,n}\)

∴ – 1(m + n) = 6m – 3n

∴ – m – n = 6m – 3n

∴ – m – 6m = n – 3n

∴ – 7m = – 2n

∴ 7m = 2n

∴ \(\large \frac {m}{n}\) = \(\large \frac {2}{7}\)

∴ m : n = 2 : 7

 

Ans: Point T divides seg PQ in the ratio 2 : 7.

4. Point P is the centre of the circle and AB is a diameter. Find the coordinates of point B if coordinates of point A and P are (2, – 3) and (– 2, 0) respectively.

Solution:

P(– 2, 0) = (x, y)

A(2, – 3) = (x₁, y₁)  

B(x₂, y₂) = ?

P is the centre of the circle …[Given] 

 

Point P is the midpoint of diameter AB.

By midpoint formula,

 

x = \(\large \frac {x₁\,+\,x₂}{2}\)

∴ – 2 = \(\large \frac {2\,+\,x₂}{2}\)

∴ – 2 × 2 = 2 + x₂

∴ – 4 – 2 = x₂

∴ x₂ = – 6

 

y = \(\large \frac {y₁\,+\,y₂}{2}\)

∴ 0 = \(\large \frac {–\,3\,+\,y₂}{2}\)

∴ 0 × 2 = – 3 + y₂

∴ 0 + 3 = y₂

∴ y₂ = 3

 

∴ B(x₂, y₂) = (– 6, 3)

 

Ans: B(x₂, y₂) = (– 6, 3)

5. Find the ratio in which point P(k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.

Solution:

A(8, 9) = (x1, y1) 

B(1, 2) = (x2, y2)

P(k, 7) = (x, y)

 

Let point P divide seg AB in the ratio m : n.

By Section formula,

 

y = \(\large \frac {my₂\,+\,ny₁}{m\,+\,n}\)

∴ 7 = \(\large \frac {m(2)\,+\,n(9)}{m\,+\,n}\)

∴ 7 (m + n) = 2m + 9n

∴ 7m + 7n = 2m + 9n

∴ 7m – 2m = 9n – 7n

∴ 5m = 2n

∴ \(\large \frac {m}{n}\) = \(\large \frac {2}{5}\)

∴ m : n = 2 : 5

 

x = \(\large \frac {mx₂\,+\,nx₁}{m\,+\,n}\)

∴ k = \(\large \frac {2(1)\,+\,5(8)}{2\,+\,5}\)

∴ k = \(\large \frac {2\,+\,40}{7}\)

∴ k = \(\large \frac {42}{7}\)

∴ k = 6

 

Ans: The ratio is 2:5 and the value of k is 6.

6. Find the coordinates of the midpoint of the segment joining the points (22, 20) and (0, 16).

Solution:

Let A(22, 20) = (x₁, y₁) and B (0, 16) = (x₂, y₂)

Let M (x, y) be the midpoint of seg AB.

By midpoint formula,

 

x = \(\large \frac {x₁\,+\,x₂}{2}\)

∴ x = \(\large \frac {22\,+\,0}{2}\)

∴ x = \(\large \frac {22}{2}\)

∴ x = 11

 

y = \(\large \frac {y₁\,+\,y₂}{2}\)

∴ y = \(\large \frac {20\,+\,16}{2}\)

∴ y = \(\large \frac {36}{2}\)

∴ y = 18

∴  M(x, y) = (11, 18)

 

Ans: M(x, y) = (11, 18)

7. Find the centroids of the triangles whose vertices are given below. 

(1) (– 7, 6), (2, – 2), (8, 5)

Solution:

Let A(–7, 6) = (x₁, y₁) 

B(2, –2) = (x₂, y₂)

C(8, 5) = (x₃, y₃) be the vertices of ABC

Let G(x, y) be the centroid of ∆ABC.

 

By centroid formula,

x = \(\large \frac {x₁\,+\,x₂\,+\,x₃}{3}\)

∴ x = \(\large \frac {–\,7\,+\,2\,+\,8}{3}\)

∴ x = \(\large \frac {3}{3}\)

∴ x = 1

 

y = \(\large \frac {y₁\,+\,y₂\,+\,y₃}{3}\)

∴ y = \(\large \frac {6\,+\,–\,2\,+\,5}{3}\)

∴ y = \(\large \frac {9}{3}\)

∴ y = 3

 

∴ G = (1, 3)

 

Ans: The centroid is G (1, 3).

(2) (3, – 5), (4, 3), (11, – 4) 

Solution:

Let A(3, – 5) = (x₁, y₁) 

B(4, 3) = (x₂, y₂)

C(11, – 4) = (x₃, y₃) be the vertices of ABC

Let G(x, y) be the centroid of ∆ABC .

 

By centroid formula,

x = \(\large \frac {x₁\,+\,x₂\,+\,x₃}{3}\)

∴ x = \(\large \frac {3\,+\,4\,+\,11}{3}\)

∴ x = \(\large \frac {18}{3}\)

∴ x = 6

 

y = \(\large \frac {y₁\,+\,y₂\,+\,y₃}{3}\)

∴ y = \(\large \frac {–\,5\,+\,3\,+\,–\,4}{3}\)

∴ y = \(\large \frac {–\,6}{3}\)

∴ y = – 2

 

∴ G = (6, – 2)

 

Ans: The centroid is G (6, – 2).

(3) (4, 7), (8, 4), (7, 11)

Solution:

Let A(4, 7) = (x₁, y₁) 

B(8, 4) = (x₂, y₂)

C(7, 11) = (x₃, y₃) be the vertices of ABC

Let G(x, y) be the centroid of ∆ABC .

 

By centroid formula,

x = \(\large \frac {x₁\,+\,x₂\,+\,x₃}{3}\)

∴ x = \(\large \frac {4\,+\,8\,+\,7}{3}\)

∴ x = \(\large \frac {19}{3}\)

 

y = \(\large \frac {y₁\,+\,y₂\,+\,y₃}{3}\)

∴ y = \(\large \frac {7\,+\,4\,+\,11}{3}\)

∴ y = \(\large \frac {22}{3}\)

 

∴ G = \(\large (\frac {19}{3}\) , \(\large \frac {22}{3})\)

 

Ans: The centroid is G \(\large (\frac {19}{3}\) , \(\large \frac {22}{3})\)

8. In ∆ABC, G(– 4, – 7) is the centroid. If A(– 14, – 19) and B(3, 5) then find the co– ordinates of C. 

Solution:

A(– 14, – 19) = (x₁, y₁) 

B(3, 5) = (x₂, y₂)

Let C (x₃, y₃)

G(– 4, – 7) = (x, y) 

Point G is the centroid of ∆ABC.

 

By centroid formula,

x = \(\large \frac {x₁\,+\,x₂\,+\,x₃}{3}\)

∴ – 4 = \(\large \frac {–\,14\,+\,3\,+\,x₃}{3}\)

∴ – 4 × 3 = – 11 + x₃

∴ – 12 = – 11 + x₃

∴ – 12 + 11 = x₃

∴ x₃ = – 1

 

y = \(\large \frac {y₁\,+\,y₂\,+\,y₃}{3}\)

∴ – 7 = \(\large \frac {–\,19\,+\,5\,+\,y₃}{3}\)

∴ – 7 × 3 = – 14 + y₃

∴ – 21 = – 14 + y₃

∴ y₃ = – 21 + 14

∴ y₃ = – 7

 

∴ C(x₃, y₃) = (– 1, – 7)

 

Ans: The value of C is (– 1, – 7).

9. A(h, – 6), B(2, 3) and C(– 6, k) are the coordinates of vertices of a triangle whose centroid is G(1, 5). Find h and k.

Solution:

Let A(h, – 6) = (x₁, y₁) 

B(2, 3) = (x₂, y₂)

and C(– 6, k) = (x₃, y₃)

G(1, 5) = (x, y) 

Point G is the centroid of ∆ABC .

 

By centroid formula,

x = \(\large \frac {x₁\,+\,x₂\,+\,x₃}{3}\)

∴ 1 = \(\large \frac {h\,+\,2\,+\,–\,6}{3}\)

∴ 1 × 3 = h – 4

∴ 3 + 4 = h

∴ h = 7

 

y = \(\large \frac {y₁\,+\,y₂\,+\,y₃}{3}\)

∴ 5 = \(\large \frac {–\,6\,+\,3\,+\,k}{3}\)

∴ 5 × 3 = – 3 + k

∴ 15 = – 3 + k

∴ k = 15 + 3

∴ k = 18

 

Ans: The value of h is 7 and k is 18.

10. Find the co– ordinates of the points of trisection of the line segment AB with A(2, 7) and B(– 4, – 8).

Solution:

IMG 20231228 165821 Chapter 5 – Co-ordinate Geometry

Let point P and Q be two points which divide seg AB in three equal parts.

Point P divides seg AB in the ratio 1 : 2

 

By Section formula,

P \(\large (\frac {mx₂\,+\,nx₁}{m\,+\,n}\) , \(\large \frac {my₂\,+\,ny₁}{m\,+\,n})\)

∴ P \(\large (\frac {1(–\,4)\,+\,2(2)}{1\,+\,2}\) , \(\large \frac {1(–\,8)\,+\,2(7)}{1\,+\,2})\)

∴ P \(\large (\frac {–\,4\,+\,4}{3}\) , \(\large \frac {–\,8\,+\,14}{3})\)

∴ P \(\large (\frac {0}{3}\) , \(\large \frac {6}{3})\)

∴ P (0, 2)

 

Also, PQ = QB

∴ Point Q is midpoint of seg PB.

By midpoint formula,

 

Q \(\large (\frac {0\,+\,(–\,4)}{2}\) , \(\large \frac {2\,+\,(–\,8)}{2})\)

∴ Q \(\large (\frac {–\,4}{2}\) , \(\large \frac {–\,6}{2})\)

∴ Q (– 2, – 3)

 

Ans: P(0, 2) and Q(– 2, – 3) are points which trisects seg AB.

11. If A (– 14, – 10), B(6, – 2) is given, find the coordinates of the points which divide segment AB into four equal parts.

Solution:

IMG 20231228 165805 Chapter 5 – Co-ordinate Geometry

Let point P(x₁, y₁), Q (x₂, y₂) and R(x₃, y₃) be the three points which divide seg AB in four equal parts.

Point Q is the midpoint of seg AB.

By midpoint formula,

x₂ = \(\large (\frac {–\,14\,+\,6}{2}\)

∴ x₂ = \(\large (\frac {–\,8}{2}\) 

∴ x₂ = – 4

 

y₂ = \(\large (\frac {–\,10\,+\,(–\,2)}{2}\)

∴ y₂ = \(\large (\frac {–\,12}{2}\) 

∴ y₂ = – 6

∴ Q (– 4, – 6)

AP = PQ …[From (i)]

∴ P is the midpoint of seg AQ.

By midpoint formula,

x₁ = \(\large (\frac {–\,14\,+\,(–\,4)}{2}\)

∴ x₁ = \(\large (\frac {–\,14\,–\,4}{2}\)

∴ x₁ = \(\large (\frac {–\,18}{2}\) 

∴ x₁ = – 9

 

y₁ = \(\large (\frac {–\,10\,+\,(–\,6)}{2}\)

∴ y₁ = \(\large (\frac {–\,10\,–\,6}{2}\)

∴ y₁ = \(\large (\frac {–\,16}{2}\) 

∴ y₁ = – 8

∴ P (– 9, – 8)

 

∴ QR = BR …[From (i)]

R is the midpoint of seg BQ.

By midpoint formula,

x₃ = \(\large (\frac {–\,4\,+\,6}{2}\)

∴ x₃ = \(\large (\frac {2}{2}\) 

∴ x₃ = 1

 

y₃ = \(\large (\frac {–\,6\,+\,(–\,2)}{2}\)

∴ y₃ = \(\large (\frac {–\,6\,–\,2}{2}\)

∴ y₃ = \(\large (\frac {–\,8}{2}\) 

∴ y₃ = – 4

∴ R (1, – 4)

 

Ans: P(– 9, – 8), Q(– 4, – 6) and R(1, – 4) divides seg AB in four equal parts.

12. If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.

Solution:

IMG 20231228 165744 Chapter 5 – Co-ordinate Geometry

Let point P(x₁, y₁), Q (x₂, y₂), R(x₃, y₃) and S(x₄, y₄) be four points which divide seg AB into five congruent parts.

Point P divides seg AB in the ratio 1 : 4.

By section formula,

x₁ = \(\large \frac {1(0)\,+\,4(20)}{1\,+\,4}\)

∴ x₁ = \(\large \frac {0\,+\,80}{5}\)

∴ x₁ = \(\large \frac {80}{5}\)

∴ x₁ = 16

 

y₁ = \(\large \frac {1(20)\,+\,4(10)}{1\,+\,4}\)

∴ y₁ = \(\large \frac {20\,+\,40}{5\)

∴ y₁ = \(\large \frac {60}{5}\)

∴ y₁ = 12

 

∴ x₁ = 16 and y₁ = 12

∴ P(16, 12)

 

AP = PQ …[From (i)]

∴ P is the midpoint of seg AQ.

By midpoint formula,

16 = \(\large \frac {20\,+\,x₂}{2}\)

∴ 16 × 2 = 20 + x₂

∴ 32 = 20 + x₂

∴ 32 – 20 = x₂

∴ x₂ = 12

 

12 = \(\large \frac {10\,+\,y₂}{2}\)

∴ 12 × 2 = 10 + y₂

∴ 24 = 10 + y₂

∴ 24 – 10 = y₂

∴ y₂ = 14

 

∴ x₂ = 12 and y₂ = 14

∴ Q(12, 14)

 

PQ = QR …[From (i)]

∴ Q is the midpoint of seg PR.

By midpoint formula,

12 = \(\large \frac {16\,+\,x₃}{2}\)

∴ 12 × 2 = 16 + x₃

∴ 24 = 16 + x₃

∴ 24 – 16 = x₃

∴ x₃ = 8

 

14 = \(\large \frac {12\,+\,y₃}{2}\)

∴ 14 × 2 = 12 + y₃

∴ 28 = 12 + y₃

∴ 28 – 12 = y₃

∴ y₃ = 16

∴ x₃ = 8 and y₃ = 16

∴ R(8, 16)

 

RS = BS …[From (i)]

∴ S is the midpoint of seg RB.

By midpoint formula,

x₄ = \(\large \frac {0\,+\,8}{2}\)

∴ x₄ = \(\large \frac {8}{2}\)

∴ x₄ = 4

 

y₄ = \(\large \frac {16\,+\,20}{2}\)

∴ y₄ = \(\large \frac {36}{2}\)

∴ y₄ = 18

∴ x₄ = 4 and y₄ = 18

∴ S(4, 18)

 

Ans: P (16, 12), Q (12, 14), R (8, 16) and S (4, 18) divides seg AB in five equal parts.

Practice set 5.3

1. Angles made by the line with the positive direction of X – axis are given. Find the slope of these lines.

(1) 45° 

Solution:

Inclination of the line (θ) = 45⁰

Slope 

= tan θ

= tan 45⁰

= 1

 

Ans: Slope = 1

 

(2) 60° 

Solution:

Inclination of the line (θ) = 60⁰

Slope 

= tan θ

= tan 60⁰

= \(\sqrt{3}\)

 

Ans: Slope = \(\sqrt{3}\)

 

(3) 90°

Solution:

Inclination of the line (θ) = 90⁰

Slope 

= tan θ

= tan 90⁰

= Not Defined

 

Ans: Slope = Not Defined

2. Find the slopes of the lines passing through the given points.

(1) A (2, 3) , B (4, 7) 

Solution:

A(2, 3) = (x₁, y₁) 

B(4, 7) = (x₂, y₂)

 

Slope = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ Slope = \(\large \frac {7\,–\,3}{4\,–\,2}\)

∴ Slope = \(\large \frac {4}{2}\)

∴ Slope = 2

 

Ans: Slope of line AB = 2

(2) P (– 3, 1) , Q (5, – 2) 

Solution:

P (– 3, 1) = (x₁, y₁) 

Q (5, – 2) = (x₂, y₂)

 

Slope = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ Slope = \(\large \frac {–\,2\,–\,1}{5\,–\,(–\,3)}\)

∴ Slope = \(\large \frac {–\,3}{5\,+\,3}\)

∴ Slope = \(\large \frac {–\,3}{8}\)

 

Ans: Slope of line PQ = \(\large \frac {–\,3}{8}\)

(3) C (5, – 2) , D (7, 3) 

Solution:

C (5, – 2) = (x₁, y₁) 

D (7, 3) = (x₂, y₂)

 

Slope = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ Slope = \(\large \frac {3\,–\,(–\,2)}{7\,–\,5}\)

∴ Slope = \(\large \frac {3\,+\,2}{2}\)

∴ Slope = \(\large \frac {5}{2}\)

 

Ans: Slope of line CD = \(\large \frac {5}{2}\)

(4) L (– 2, – 3) , M (– 6, – 8) 

Solution:

L (– 2, – 3) = (x₁, y₁) 

M (– 6, – 8) = (x₂, y₂)

 

Slope = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ Slope = \(\large \frac {–\,8\,–\,(–\,3)}{–\,6\,–\,(–\,2)}\)

∴ Slope = \(\large \frac {–\,8\,+\,3}{–\,6\,+\,2}\)

∴ Slope = \(\large \frac {–\,5}{–\,4}\)

∴ Slope = \(\large \frac {5}{4}\)

 

Ans: Slope of line LM = \(\large \frac {5}{4}\)

(5) E(– 4, – 2) , F (6, 3) 

Solution:

E(– 4, – 2) = (x₁, y₁) 

F (6, 3) = (x₂, y₂)

 

Slope = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ Slope = \(\large \frac {3\,–\,(–\,2)}{6\,–\,(–\,4)}\)

∴ Slope = \(\large \frac {3\,+\,2}{6\,+\,4}\)

∴ Slope = \(\large \frac {5}{10}\)

∴ Slope = \(\large \frac {1}{2}\)

 

Ans: Slope of line EF = \(\large \frac {1}{2}\)

(6) T (0, – 3) , S (0, 4)

Solution:

T (0, – 3) = (x₁, y₁) 

S (0, 4) = (x₂, y₂)

 

Slope = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ Slope = \(\large \frac {4\,–\,(–\,3)}{0\,–\,0}\)

∴ Slope = \(\large \frac {4\,+\,3}{0}\)

∴ Slope = \(\large \frac {7}{0}\)

∴ Slope = Not Defined

 

Ans: Slope of line TS = Not Defined.

3. Determine whether the following points are collinear.

(1) A(– 1, – 1), B(0, 1), C(1, 3) 

Solution:

A(–1, –1) = (x₁, y₁)

B(0, 1) = (x₂, y₂)

C(1, 3) = (x₃, y₃)

 

Slope of line AB 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {1\,–\,(–\,1)}{0\,–\,(–\,1)}\)

= \(\large \frac {1\,+\,1}{0\,+\,1}\)

= \(\large \frac {2}{1}\)

∴ Slope of line AB = 2

 

Slope of line BC 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {3\,–\,1}{1\,–\,0}\)

= \(\large \frac {2}{1}\)

∴ Slope of line BC = 2

 

∴ Slope of line AB = Slope of line BC …[From (i) and (ii)]

Also, both lines have a common point B.

 

∴ Points A, B and C are collinear points.

(2) D(– 2, – 3), E(1, 0), F(2, 1)

Solution:

D(– 2, – 3) = (x₁, y₁)

E(1, 0) = (x₂, y₂)

F(2, 1) = (x₃, y₃)

 

Slope of line DE 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {0\,–\,(–\,3)}{1\,–\,(–\,2)}\)

= \(\large \frac {0\,+\,3}{1\,+\,2}\)

= \(\large \frac {3}{3}\)

∴ Slope of line DE = 1

 

Slope of line EF 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {1\,–\,0}{2\,–\,1}\)

= \(\large \frac {1}{1}\)

∴ Slope of line EF = 1

 

∴ Slope of line DE = Slope of line EF …[From (i) and (ii)]

Also, both lines have a common point E.

 

∴ Points D, E and F are collinear points.

(3) L(2, 5), M(3, 3), N(5, 1) 

Solution:

L(2, 5) = (x₁, y₁)

M(3, 3) = (x₂, y₂)

N(5, 1) = (x₃, y₃)

 

Slope of line LM

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {3\,–\,5}{3\,–\,2}\)

= \(\large \frac {–\,2}{1}\)

∴ Slope of line LM = – 2

 

Slope of line MN 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {1\,–\,3}{5\,–\,3}\)

= \(\large \frac {–\,2}{2}\)

∴ Slope of line MN = – 1

 

∴ Slope of line LM ≠ Slope of line MN …[From (i) and (ii)]

 

∴ Points L, M and N are non-collinear points.

(4) P(2, – 5), Q(1, – 3), R(– 2, 3)

Solution:

P(2, – 5) = (x₁, y₁)

Q(1, – 3) = (x₂, y₂)

R(– 2, 3) = (x₃, y₃)

 

Slope of line PQ

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {–\,3\,–\,(–\,5)}{1\,–\,2}\)

= \(\large \frac {–\,3\,+\,5}{–\,1}\)

= \(\large \frac {2}{–\,1}\)

∴ Slope of line PQ = – 2

 

Slope of line QR 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {3\,–\,(–\,3)}{–\,2\,–\,1}\)

= \(\large \frac {3\,+\,3}{–\,3}\)

= \(\large \frac {6}{–\,3}\)

∴ Slope of line QR = – 2

 

∴ Slope of line PQ = Slope of line QR …[From (i) and (ii)]

Also, both lines have a common point Q.

 

∴ Points P, Q and R are collinear points.

(5) R(1, – 4), S(– 2, 2), T(– 3, 4) 

Solution:

R(1, – 4) = (x₁, y₁)

S(– 2, 2) = (x₂, y₂)

T(– 3, 4) = (x₃, y₃)

 

Slope of line RS 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {2\,–\,(–\,4)}{–\,2\,–\,1}\)

= \(\large \frac {2\,+\,4}{–\,3}\)

= \(\large \frac {6}{–\,3}\)

∴ Slope of line RS = – 2

 

Slope of line SR 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {4\,–\,2}{–\,3\,–\,(–\,2)}\)

= \(\large \frac {2}{–\,3\,+\,2}\)

= \(\large \frac {2}{–\,1}\)

∴ Slope of line QR = – 2

 

∴ Slope of line RS = Slope of line ST …[From (i) and (ii)]

Also, they have a common point S.

 

∴ Points R, S and T are collinear points.

(6) A(– 4, 4), K(– 2, \(\large \frac {5}{2})\), N(4, – 2)

Solution:

A(– 4, 4) = (x₁, y₁)

K(– 2, \(\large \frac {5}{2})\) = (x₂, y₂)

N(4, – 2) = (x₃, y₃)

 

Slope of line AK 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {\frac{5}{2}\,–\,4}{–\,2\,–\,(–\,4)}\)

= \(\large \frac {\frac{5\,–\,8}{2}}{–\,2\,+\,4}\)

= \(\large \frac {\frac{–\,3}{2}}{2}\)

= \(\large \frac {–\,3}{2\,×\,2}\)

∴ Slope of line RS = \(\large \frac {–\,3}{4}\)

 

Slope of line AN 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {–\,2\,–\,4}{4\,–\,(–\,4)}\)

= \(\large \frac {–\,6}{4\,+\,4}\)

= \(\large \frac {–\,6}{8}\)

∴ Slope of line AN = \(\large \frac {–\,3}{4}\)

 

Slope of line AK = Slope of line AN …[From (i) and (ii)]

Also, they have a common point A.

∴ Points A, K and N are collinear points.

4. If A (1, – 1),B (0, 4),C (– 5, 3) are vertices of a triangle then find the slope of each side.

Solution:

A(1, –1), B(0, 4), C(–5, 3)

 

By using slope formula,

Slope of AB 

= \(\large \frac {4\,–\,(–\,1)}{0\,–\,1}\)

= \(\large \frac {4\,+\,1}{–\,1}\)

= \(\large \frac {5}{–\,1}\)

∴ Slope of AB = – 5

 

Slope of BC 

= \(\large \frac {3\,–\,4}{–\,5\,–\,0}\)

= \(\large \frac {–\,1}{–\,5}\)

∴ Slope of BC = \(\large \frac {1}{5}\)

 

Slope of AC 

= \(\large \frac {3\,–\,(–\,1)}{–\,5\,–\,1}\)

= \(\large \frac {3\,+\,1}{–\,6}\)

= \(\large \frac {4}{–\,6}\)

∴ Slope of AC = \(\large \frac {–\,2}{3}\)

5. Show that A (– 4, – 7),B (– 1, 2), C (8, 5) and D (5, – 4) are the vertices of a parallelogram.

Solution:

A (– 4, – 7),B (– 1, 2), C (8, 5) and D (5, – 4)

 

By using slope formula,

Slope of AB 

= \(\large \frac {2\,–\,(–\,7)}{–\,1\,–\,(–\,4)}\)

= \(\large \frac {2\,+\,7}{–\,1\,+\,4}\)

= \(\large \frac {9}{3}\)

∴ Slope of AB = 3

 

Slope of BC 

= \(\large \frac {5\,–\,2}{8\,–\,(–\,1)}\)

= \(\large \frac {3}{8\,+\,1}\)

= \(\large \frac {3}{9}\)

∴ Slope of BC = \(\large \frac {1}{3}\)

 

Slope of AD 

= \(\large \frac {–\,4\,–\,(–\,7)}{5\,–\,(–\,4)}\)

= \(\large \frac {–\,4\,+\,7}{5\,+\,4}\)

= \(\large \frac {3}{9}\)

∴ Slope of AD = \(\large \frac {1}{3}\)

 

Slope of CD 

= \(\large \frac {–\,4\,–\,5}{5\,–\,8}\)

= \(\large \frac {–\,9}{–\,3}\)

= \(\large \frac {9}{3}\)

∴ Slope of CD = 3

 

Slope of line AB = Slope of line CD …[From (i) and (iv)]

∴ Line AB || Line CD …(v)

∴ Slope of line BC = Slope of line AD …[From (ii) and (iii)]

∴ Line BC || Line AD …(vi)

 

In □ ABCD, 

AB || CD …[From (v)]

BC || AD …[From (vi)]

 

∴ □ ABCD is a parallelogram …[Definition]

6. Find k, if R(1, – 1), S (– 2, k) and slope of line RS is – 2.

Solution:

R(1, – 1) = (x₁, y₁) 

S(– 2, k) = (x₂, y₂)

 

Slope of line RS = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ – 2 = \(\large \frac {k\,–\,(–\,1)}{–\,2\,–\,1}\)

∴ – 2 = \(\large \frac {k\,+\,1}{–\,3}\)

∴ – 2 × – 3 = k + 1

∴ k + 1 = 6

∴ k = 6 – 1

∴ k = 5

 

Ans: The value of k is 5.

7. Find k, if B(k, – 5), C (1, 2) and slope of the line is 7. 

Solution:

B(k, –5) = (x₁, y₁) 

C(1, 2) = (x₂, y₂)

 

Slope of line BC = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ 7 = \(\large \frac {2\,–\,(–\,5)}{1\,–\,k}\)

∴ 7(1 – k) = 2 + 5

∴ 7(1 – k) = 7

∴ 1 – k = \(\large \frac {7}{7}\)

∴ 1 – k = 1

∴ 1 – 1 = k

∴ k = 0

 

Ans: The value of k is 0.

8. Find k, if PQ || RS and P(2, 4), Q (3, 6), R(3, 1), S(5, k).

Solution:

Line PQ Line RS …[Given]

∴ Slope of line PQ = Slope of line RS

∴ \(\large \frac {6\,–\,4}{3\,–\,2}\) = \(\large \frac {k\,–\,1}{5\,–\,3}\)

∴ \(\large \frac {2}{1}\) = \(\large \frac {k\,–\,1}{2}\)

∴ 2 × 2 = k – 1

∴ 4 = k – 1

∴ 4 + 1 = k

∴ k = 5

 

Ans: The value of k is 5.

Problem Set 5

1. Fill in the blanks using correct alternatives.

(1) Seg AB is parallel to Y – axis and coordinates of point A are (1, 3) then co– ordinates of point B can be ______.

(A) (3, 1) 

(B) (5, 3) 

(C) (3, 0) 

(D) (1, – 3)

 

Ans: Option (D) : (1, – 3)

 

(2) Out of the following, point …….. lies to the right of the origin on X–  axis.

(A) (– 2, 0) 

(B) (0, 2) 

(C) (2, 3) 

(D) (2, 0)

 

Ans: Option (D) : (2, 0)

 

(3) Distance of point (– 3, 4) from the origin is _____.

(A) 7 

(B) 1 

(C) 5 

(D) – 5

 

Ans: Option (C) : 5

 

(4) A line makes an angle of 30° with the positive direction of the X – axis. So the slope of the line is ______.

(A) \(\large \frac {1}{2}\)

(B) \(\large \frac {\sqrt{3}}{2}\)

(C) \(\large \frac {1}{\sqrt{3}}\)

(D) \(\sqrt{3}\) 

 

Ans: Option (C) : \(\large \frac {1}{\sqrt{3}}\)

2. Determine whether the given points are collinear.

(1) A(0, 2), B(1, – 0. 5), C(2, – 3) 

Solution:

A(0, 2) = (x₁, y₁)

B(1, – 0. 5) = (x₂, y₂)

C(2, – 3) = (x₃, y₃)

 

Slope of line AB

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {–\,0.5\,–\,2}{1\,–\,0}\)

= \(\large \frac {–\,2.5}{1}\)

∴ Slope of line AB = – 2.5 …(i)

 

Slope of line AC

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {–\,3\,–\,(–\,0.5)}{2\,–\,1}\)

= \(\large \frac {–\,3\,+\,0.5}{1}\)

∴ Slope of line AC = – 2.5 …(ii)

 

∴ Slope of line AB = Slope of line AC …[From (i) and (ii)]

Also, they have a common point A.

 

∴ Points A, B and C are collinear points.

 

(2) P(1, 2), Q(2, \(\large \frac {8}{5})\), R(3, \(\large \frac {6}{5}\)

Solution:

P(1, 2) = (x₁, y₁)

Q(2, \(\large \frac {8}{5})\) = (x₂, y₂)

R(3, \(\large \frac {6}{5}\) = (x₃, y₃)

 

Slope of line PQ

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {\frac {8}{5}\,–\,2}{2\,–\,1}\)

= \(\large \frac {\frac {8\,–\,10}{5}}{1}\)

∴ Slope of line AB = \(\large \frac {–\,2}{5}\) …(i)

 

Slope of line QR

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {\frac {6}{5}\,–\,\frac {8}{5}}{3\,–\,2}\)

= \(\large \frac {\frac {–\,2}{5}}{1}\)

∴ Slope of line AC = \(\large \frac {–\,2}{5}\) …(ii)

 

∴ Slope of line PQ = Slope of line QR …[From (i) and (ii)]

Also, they have a common point Q.

 

∴ Points P, Q and R are collinear points.

 

(3) L(1, 2), M(5, 3), N(8, 6)

Solution:

L(1, 2) = (x₁, y₁)

M(5, 3) = (x₂, y₂)

N(8, 6) = (x₃, y₃)

 

Slope of line LM

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {3\,–\,2}{5\,–\,1}\)

∴ Slope of line LM = \(\large \frac {1}{4}\) …(i)

 

Slope of line MN

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {6\,–\,3}{8\,–\,5}\)

= \(\large \frac {3}{3}\)

∴ Slope of line MN = 1 …(ii)

 

∴ Slope of line LM ≠ Slope of line MN …[From (i) and (ii)]

 

∴ Points L, M and N are not collinear points.

3. Find the coordinates of the midpoint of the line segment joining P(0, 6) and Q(12, 20). 

Solution:

P(0, 6) = (x₁, y₁) and Q(12, 20) = (x₂, y₂)

Let M (x, y) be the midpoint of seg PQ.

 

By midpoint formula,

x = \(\large \frac {x₁\,+\,x₂}{2}\)

∴ x = \(\large \frac {0\,+\,12}{2}\)

∴ x = \(\large \frac {12}{2}\)

∴ x = 6

 

y = \(\large \frac {y₁\,+\,y₂}{2}\)

∴ y = \(\large \frac {6\,+\,20}{2}\)

∴ y = \(\large \frac {26}{2}\)

∴ y = 13

 

Ans: M(6, 13) is the midpoint of segment joining P (0, 6) and Q (12, 20)

4. Find the ratio in which the line segment joining the points A(3, 8) and B(– 9, 3) is divided by the Y – axis.

Solution:

A(3, 8) = (x₁, y₁) 

B(– 9, 3) = (x₂, y₂)

 

Let point P(0, a) be a point on the Y-axis which divides seg AB in the ratio m : n.

P(0, a) = (x, y)

 

By Section formula,

x = \(\large \frac {mx₂\,+\,nx₁}{m\,+\,n}\)

∴ 0 = \(\large \frac {m(–\,9)\,+\,n(3)}{m\,+\,n}\)

∴ 0 × (m + n) = – 9m + 3n

∴ 0 = – 9m + 3n

∴ 9m = 3n

∴ \(\large \frac {m}{n}\) = \(\large \frac {3}{9}\)

∴ \(\large \frac {m}{n}\) = \(\large \frac {1}{3}\)

∴ m : n = 1 : 3

 

Ans: Y-axis divides segment joining points A and B in the ratios 1 : 3.

5. Find the point on the X – axis which is equidistant from P(2, – 5) and Q(– 2, 9).

Solution:

Let A(a, 0) be a point equidistant from P(2, – 5) and Q(– 2, 9).

∴ d(P, A) = d(Q, A) 

 

Using distance formula,

\(\sqrt{(a\,–\,2)²\,+\,[0\,–\,(–\,5)]²}\) = \(\sqrt{[a\,–\,(–\,2)]²\,+\,(0\,–\,9)²}\)

 

Squaring both the sides we get,

(a – 2)² + 5² = (a + 2)² + (– 9)²

∴ a² – 4a + 4 + 25 = a² + 4a + 4 + 81

∴ a² – 4a – a² – 4a = 81 – 25

∴ – 8a = 56

∴ a = \(\large \frac {56}{–\,8}\)

∴  a = – 7

 

Ans: (– 7, 0) is a point on the X-axis equidistant from P(2, – 5) and Q(– 2, 9).

6. Find the distances between the following points.

(i) A(a, 0), B(0, a) 

Solution:

Let A(a, 0) = (x₁, y₁) 

B(0, a) = (x₂, y₂)

 

By distance formula,

d(A, B) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(A, B) = \(\sqrt{(0\,–\,a)^2\,+\,(a\,–\,0)^2}\)

∴ d(A, B) = \(\sqrt{(–\,a)^2\,+\,(a)^2}\)

∴ d(A, B) = \(\sqrt{a²\,+\,a²}\)

∴ d(A, B) = \(\sqrt{2(a²)}\)

∴ d(A, B) = \(\sqrt{2}\)a units

 

Ans: d(A, B) = \(\sqrt{2}\)a units

 

(ii) P(– 6, – 3), Q(– 1, 9) 

Solution:

Let P(– 6, – 3) = (x₁, y₁) 

Q(– 1, 9) = (x₂, y₂) 

 

By distance formula,

d(P, Q) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(P, Q) = \(\sqrt{[–\,1\,–\,(–\,6)^2\,+\,[9\,–\,(–\,3)^2}\)

∴ d(P, Q) = \(\sqrt{(–\,1\,+\,6)^2\,+\,(9\,+\,3)^2}\)

∴ d(P, Q) = \(\sqrt{(5)^2\,+\,(12)^2}\)

∴ d(P, Q) = \(\sqrt{25\,+\,143}\)

∴ d(P, Q) = \(\sqrt{169}\)

∴ d(P, Q) = 13 units

 

Ans: d(P, Q) = 13 units

 

(iii) R(– 3a, a), S(a, – 2a)

Solution:

Let R(– 3a, a) = (x₁, y₁) 

S(a, – 2a) = (x₂, y₂)

 

By distance formula,

d(R, S) = \(\sqrt{(x₂\,–\,x₁)^2\,+\,(y₂\,–\,y₁)^2}\)

∴ d(R, S) = \(\sqrt{[a\,–\,(–\,3a)]^2\,+\,(–\,2a\,–\,a)^2}\)

∴ d(R, S) = \(\sqrt{(a\,+\,3a)^2\,+\,(–\,3a)^2}\)

∴ d(R, S) = \(\sqrt{(4a)^2\,+\,9a²}\)

∴ d(R, S) = \(\sqrt{16a²\,+\,9a²}\)

∴ d(R, S) = \(\sqrt{25a²}\)

∴ d(R, S) = 5a units

 

Ans: d(R, S) = 5a units

(6) T (0, – 3) , S (0, 4)

Solution:

T (0, – 3) = (x₁, y₁) 

S (0, 4) = (x₂, y₂)

 

Slope = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ Slope = \(\large \frac {4\,–\,(–\,3)}{0\,–\,0}\)

∴ Slope = \(\large \frac {4\,+\,3}{0}\)

∴ Slope = \(\large \frac {7}{0}\)

∴ Slope = Not Defined

 

Ans: Slope of line TS = Not Defined.

3. Determine whether the following points are collinear.

(1) A(– 1, – 1), B(0, 1), C(1, 3) 

Solution:

A(–1, –1) = (x₁, y₁)

B(0, 1) = (x₂, y₂)

C(1, 3) = (x₃, y₃)

 

Slope of line AB 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {1\,–\,(–\,1)}{0\,–\,(–\,1)}\)

= \(\large \frac {1\,+\,1}{0\,+\,1}\)

= \(\large \frac {2}{1}\)

∴ Slope of line AB = 2

 

Slope of line BC 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {3\,–\,1}{1\,–\,0}\)

= \(\large \frac {2}{1}\)

∴ Slope of line BC = 2

 

∴ Slope of line AB = Slope of line BC …[From (i) and (ii)]

Also, both lines have a common point B.

 

∴ Points A, B and C are collinear points.

(2) D(– 2, – 3), E(1, 0), F(2, 1)

Solution:

D(– 2, – 3) = (x₁, y₁)

E(1, 0) = (x₂, y₂)

F(2, 1) = (x₃, y₃)

 

Slope of line DE 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {0\,–\,(–\,3)}{1\,–\,(–\,2)}\)

= \(\large \frac {0\,+\,3}{1\,+\,2}\)

= \(\large \frac {3}{3}\)

∴ Slope of line DE = 1

 

Slope of line EF 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {1\,–\,0}{2\,–\,1}\)

= \(\large \frac {1}{1}\)

∴ Slope of line EF = 1

 

∴ Slope of line DE = Slope of line EF …[From (i) and (ii)]

Also, both lines have a common point E.

 

∴ Points D, E and F are collinear points.

(3) L(2, 5), M(3, 3), N(5, 1) 

Solution:

L(2, 5) = (x₁, y₁)

M(3, 3) = (x₂, y₂)

N(5, 1) = (x₃, y₃)

 

Slope of line LM

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {3\,–\,5}{3\,–\,2}\)

= \(\large \frac {–\,2}{1}\)

∴ Slope of line LM = – 2

 

Slope of line MN 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {1\,–\,3}{5\,–\,3}\)

= \(\large \frac {–\,2}{2}\)

∴ Slope of line MN = – 1

 

∴ Slope of line LM ≠ Slope of line MN …[From (i) and (ii)]

 

∴ Points L, M and N are non-collinear points.

(4) P(2, – 5), Q(1, – 3), R(– 2, 3)

Solution:

P(2, – 5) = (x₁, y₁)

Q(1, – 3) = (x₂, y₂)

R(– 2, 3) = (x₃, y₃)

 

Slope of line PQ

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {–\,3\,–\,(–\,5)}{1\,–\,2}\)

= \(\large \frac {–\,3\,+\,5}{–\,1}\)

= \(\large \frac {2}{–\,1}\)

∴ Slope of line PQ = – 2

 

Slope of line QR 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {3\,–\,(–\,3)}{–\,2\,–\,1}\)

= \(\large \frac {3\,+\,3}{–\,3}\)

= \(\large \frac {6}{–\,3}\)

∴ Slope of line QR = – 2

 

∴ Slope of line PQ = Slope of line QR …[From (i) and (ii)]

Also, both lines have a common point Q.

 

∴ Points P, Q and R are collinear points.

(5) R(1, – 4), S(– 2, 2), T(– 3, 4) 

Solution:

R(1, – 4) = (x₁, y₁)

S(– 2, 2) = (x₂, y₂)

T(– 3, 4) = (x₃, y₃)

 

Slope of line RS 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {2\,–\,(–\,4)}{–\,2\,–\,1}\)

= \(\large \frac {2\,+\,4}{–\,3}\)

= \(\large \frac {6}{–\,3}\)

∴ Slope of line RS = – 2

 

Slope of line SR 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {4\,–\,2}{–\,3\,–\,(–\,2)}\)

= \(\large \frac {2}{–\,3\,+\,2}\)

= \(\large \frac {2}{–\,1}\)

∴ Slope of line QR = – 2

 

∴ Slope of line RS = Slope of line ST …[From (i) and (ii)]

Also, they have a common point S.

 

∴ Points R, S and T are collinear points.

(6) A(– 4, 4), K(– 2, \(\large \frac {5}{2})\), N(4, – 2)

Solution:

A(– 4, 4) = (x₁, y₁)

K(– 2, \(\large \frac {5}{2})\) = (x₂, y₂)

N(4, – 2) = (x₃, y₃)

 

Slope of line AK 

= \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

= \(\large \frac {\frac{5}{2}\,–\,4}{–\,2\,–\,(–\,4)}\)

= \(\large \frac {\frac{5\,–\,8}{2}}{–\,2\,+\,4}\)

= \(\large \frac {\frac{–\,3}{2}}{2}\)

= \(\large \frac {–\,3}{2\,×\,2}\)

∴ Slope of line RS = \(\large \frac {–\,3}{4}\)

 

Slope of line AN 

= \(\large \frac {y₃\,–\,y₂}{x₃\,–\,x₂}\)

= \(\large \frac {–\,2\,–\,4}{4\,–\,(–\,4)}\)

= \(\large \frac {–\,6}{4\,+\,4}\)

= \(\large \frac {–\,6}{8}\)

∴ Slope of line AN = \(\large \frac {–\,3}{4}\)

 

Slope of line AK = Slope of line AN …[From (i) and (ii)]

Also, they have a common point A.

∴ Points A, K and N are collinear points.

4. If A (1, – 1),B (0, 4),C (– 5, 3) are vertices of a triangle then find the slope of each side.

Solution:

A(1, –1), B(0, 4), C(–5, 3)

 

By using slope formula,

Slope of AB 

= \(\large \frac {4\,–\,(–\,1)}{0\,–\,1}\)

= \(\large \frac {4\,+\,1}{–\,1}\)

= \(\large \frac {5}{–\,1}\)

∴ Slope of AB = – 5

 

Slope of BC 

= \(\large \frac {3\,–\,4}{–\,5\,–\,0}\)

= \(\large \frac {–\,1}{–\,5}\)

∴ Slope of BC = \(\large \frac {1}{5}\)

 

Slope of AC 

= \(\large \frac {3\,–\,(–\,1)}{–\,5\,–\,1}\)

= \(\large \frac {3\,+\,1}{–\,6}\)

= \(\large \frac {4}{–\,6}\)

∴ Slope of AC = \(\large \frac {–\,2}{3}\)

5. Show that A (– 4, – 7),B (– 1, 2), C (8, 5) and D (5, – 4) are the vertices of a parallelogram.

Solution:

A (– 4, – 7),B (– 1, 2), C (8, 5) and D (5, – 4)

 

By using slope formula,

Slope of AB 

= \(\large \frac {2\,–\,(–\,7)}{–\,1\,–\,(–\,4)}\)

= \(\large \frac {2\,+\,7}{–\,1\,+\,4}\)

= \(\large \frac {9}{3}\)

∴ Slope of AB = 3

 

Slope of BC 

= \(\large \frac {5\,–\,2}{8\,–\,(–\,1)}\)

= \(\large \frac {3}{8\,+\,1}\)

= \(\large \frac {3}{9}\)

∴ Slope of BC = \(\large \frac {1}{3}\)

 

Slope of AD 

= \(\large \frac {–\,4\,–\,(–\,7)}{5\,–\,(–\,4)}\)

= \(\large \frac {–\,4\,+\,7}{5\,+\,4}\)

= \(\large \frac {3}{9}\)

∴ Slope of AD = \(\large \frac {1}{3}\)

 

Slope of CD 

= \(\large \frac {–\,4\,–\,5}{5\,–\,8}\)

= \(\large \frac {–\,9}{–\,3}\)

= \(\large \frac {9}{3}\)

∴ Slope of CD = 3

 

Slope of line AB = Slope of line CD …[From (i) and (iv)]

∴ Line AB || Line CD …(v)

∴ Slope of line BC = Slope of line AD …[From (ii) and (iii)]

∴ Line BC || Line AD …(vi)

 

In □ ABCD, 

AB || CD …[From (v)]

BC || AD …[From (vi)]

 

∴ □ ABCD is a parallelogram …[Definition]

6. Find k, if R(1, – 1), S (– 2, k) and slope of line RS is – 2.

Solution:

R(1, – 1) = (x₁, y₁) 

S(– 2, k) = (x₂, y₂)

 

Slope of line RS = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ – 2 = \(\large \frac {k\,–\,(–\,1)}{–\,2\,–\,1}\)

∴ – 2 = \(\large \frac {k\,+\,1}{–\,3}\)

∴ – 2 × – 3 = k + 1

∴ k + 1 = 6

∴ k = 6 – 1

∴ k = 5

 

Ans: The value of k is 5.

7. Find k, if B(k, – 5), C (1, 2) and slope of the line is 7. 

Solution:

B(k, –5) = (x₁, y₁) 

C(1, 2) = (x₂, y₂)

 

Slope of line BC = \(\large \frac {y₂\,–\,y₁}{x₂\,–\,x₁}\)

∴ 7 = \(\large \frac {2\,–\,(–\,5)}{1\,–\,k}\)

∴ 7(1 – k) = 2 + 5

∴ 7(1 – k) = 7

∴ 1 – k = \(\large \frac {7}{7}\)

∴ 1 – k = 1

∴ 1 – 1 = k

∴ k = 0

 

Ans: The value of k is 0.

8. Find k, if PQ || RS and P(2, 4), Q (3, 6), R(3, 1), S(5, k).

Solution:

Line PQ Line RS …[Given]

∴ Slope of line PQ = Slope of line RS

∴ \(\large \frac {6\,–\,4}{3\,–\,2}\) = \(\large \frac {k\,–\,1}{5\,–\,3}\)

∴ \(\large \frac {2}{1}\) = \(\large \frac {k\,–\,1}{2}\)

∴ 2 × 2 = k – 1

∴ 4 = k – 1

∴ 4 + 1 = k

∴ k = 5

 

Ans: The value of k is 5.

Leave a Reply