Maharashtra Board Textbook Solutions for Standard Seven

Chapter 6 – Indices

Practice Set 26

1. Complete the table below.

IMG 20231008 011940 Chapter 6 – Indices

Solution:

Sum no 1 Chapter 6 – Indices

2. Find the value.

(i) 2¹⁰

Solution: 

2¹⁰

= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

= 1024

 

Ans: 2¹⁰ = 1024

 

(ii) 5³ 

Solution: 

= 5 × 5 × 5

= 125

 

Ans: 5³ = 125

 

(iii) (– 7)⁴

Solution: 

(– 7)⁴

= (– 7) × (– 7) × (– 7) × (– 7)

= 2401

Ans: (– 7)⁴ = 2401

 

(iv) (– 6)³

Solution: 

(– 6)³

= (– 6) × (– 6) × (– 6)

= – 216

 

Ans: (– 6)³ = – 216

 

(v) 9³

Solution: 

= 9 × 9 × 9

= 729

 

Ans: 9³ = 729

 

(vi) 8¹

Solution: 

= 8

 

Ans: 8¹ = 8

 

(vii) \(\large (\frac {4}{5})\)³

Solution: 

\(\large (\frac {4}{5})\)³

= \(\large (\frac {4}{5})\) × \(\large (\frac {4}{5})\) × \(\large (\frac {4}{5})\)

= \(\large \frac {64}{25}\)

 

Ans: \(\large (\frac {4}{5})\)³ = \(\large \frac {64}{25}\) 

 

(viii) \(\large (\frac {–\,1}{2})\)⁴

Solution: 

\(\large (\frac {–\,1}{2})\)⁴

= \(\large (\frac {–\,1}{2})\) × \(\large (\frac {–\,1}{2})\) × \(\large (\frac {–\,1}{2})\) × \(\large (\frac {–\,1}{2})\)

= \(\large \frac {1}{16}\)

 

Ans: \(\large (\frac {–\,1}{2})\)⁴ = \(\large \frac {1}{16}\)

Practice Set 27

(1) Simplify.

(i) 7⁴ × 7²

Solution: 

7⁴ × 7²

= 7⁴⁺² …[∵ aᵐ × aⁿ = aᵐ⁺ⁿ]

= 7⁶

 

(ii) (– 11)⁵ × (– 11)² 

Solution: 

(– 11)⁵ × (– 11)² 

= (– 11)⁵⁺² …[∵ aᵐ × aⁿ = aᵐ⁺ⁿ]

= (– 11)⁷ 

 

(iii) \(\large (\frac {6}{7})\)³ × \(\large (\frac {6}{7})\)⁵

Solution: 

\(\large (\frac {6}{7})\)³ × \(\large (\frac {6}{7})\)⁵

= \(\large (\frac {6}{7})\)³⁺⁵ …[∵ aᵐ × aⁿ = aᵐ⁺ⁿ]

= \(\large (\frac {6}{7})\)⁸

 

(iv) \(\large (–\,\frac {3}{2})\)⁵ × \(\large (–\,\frac {3}{2})\)³

Solution: 

\(\large (–\,\frac {3}{2})\)⁵ × \(\large (–\,\frac {3}{2})\)³

= \(\large (–\,\frac {3}{2})\)⁵⁺³ …[∵ aᵐ × aⁿ = aᵐ⁺ⁿ]

= \(\large (–\,\frac {3}{2})\)⁸

 

(v) a¹⁶ × a⁷

Solution: 

a¹⁶ × a⁷

= a¹⁶⁺⁷ …[∵ aᵐ × aⁿ = aᵐ⁺ⁿ]

= a²³

 

(vi) \(\large (\frac {P}{5})\)³ × \(\large (\frac {P}{5})\)⁷

Solution: 

\(\large (\frac {P}{5})\)³ × \(\large (\frac {P}{5})\)⁷

= \(\large (\frac {P}{5})\)³⁺⁷ …[∵ aᵐ × aⁿ = aᵐ⁺ⁿ]

= \(\large (\frac {P}{5})\)¹⁰

Practice Set 28

1. Simplify.

(i) a⁶ ÷ a⁴

Solution:

a⁶ ÷ a⁴ 

= a⁶⁻⁴ …[∵ \(\large \frac {aᵐ}{aⁿ}\) = aᵐ⁻ⁿ]

= a²

 

Ans: a⁶ ÷ a⁴ = a²

 

(ii) m⁵ ÷ m⁸ 

Solution:

m⁵ ÷ m⁸ 

= m⁵⁻⁸ …[∵ \(\large \frac {aᵐ}{aⁿ}\) = aᵐ⁻ⁿ]

= m³

 

Ans: m⁵ ÷ m⁸ = m³

 

(iii) p³ ÷ p¹³

Solution:

p³ ÷ p¹³

= p³⁻¹³ …[∵ \(\large \frac {aᵐ}{aⁿ}\) = aᵐ⁻ⁿ]

= p⁻¹⁰

 

Ans: p³ ÷ p¹³ = p⁻¹⁰

 

(iv) x¹⁰ ÷ x¹⁰

Solution:

x¹⁰ ÷ x¹⁰ 

= x¹⁰⁻¹⁰ …[∵ \(\large \frac {aᵐ}{aⁿ}\) = aᵐ⁻ⁿ]

= x⁰ 

= 1 …[∵ a⁰ = 1]

 

Ans: x¹⁰ ÷ x¹⁰ = 1

2. Find the value.

(i) (– 7)¹² ÷ (– 7)¹²

Solution:

(– 7)¹² ÷ (– 7)¹²

= (– 7)¹²⁻¹² …[∵ aᵐ ÷ aⁿ = aᵐ⁻ⁿ]

= (– 7)⁰ 

= 1 …[∵ a⁰ = 1]

 

Ans: (– 7)¹² ÷ (– 7)¹² = 1

 

(ii) 7⁵ ÷ 7³

Solution:

7⁵ ÷ 7³

= 7⁵⁻³ …[∵ aᵐ ÷ aⁿ = aᵐ⁻ⁿ]

= 7²

= 7 × 7

= 49

 

Ans: 7⁵ ÷ 7³ = 49

 

(iii) \(\large (\frac {4}{5})\)³ ÷ \(\large (\frac {4}{5})\)²

Solution:

\(\large (\frac {4}{5})\)³ ÷ \(\large (\frac {4}{5})\)²

= \(\large (\frac {4}{5})\)³⁻² …[∵ aᵐ ÷ aⁿ = aᵐ⁻ⁿ]

= \(\large (\frac {4}{5})\)

 

Ans: \(\large (\frac {4}{5})\)³ ÷ \(\large (\frac {4}{5})\)² = \(\large (\frac {4}{5})\) 

 

(iv) 4⁷ ÷ 4⁵

Solution:

4⁷ ÷ 4⁵

= 4⁷⁻⁵ …[∵ aᵐ ÷ aⁿ = aᵐ⁻ⁿ]

= 4²

= 4 × 4

= 16 

 

Ans: 4⁷ ÷ 4⁵ = 16

Practice Set 29

1. Simplify.

(i) \(\large [(\frac {15}{12})³]⁴\)

Solution:

\(\large [(\frac {15}{12})³]⁴\)

= \(\large (\frac {15}{12})³ˣ⁴\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large (\frac {15}{12})¹²\)

 

Ans: \(\large [(\frac {15}{12})³]⁴\) = \(\large (\frac {15}{12})¹²\)

 

(ii) (3⁴)⁻²

Solution:

(3⁴)⁻²

= (3⁴ˣ⁻²) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= 3⁻⁸

 

Ans: (3⁴)⁻² = 3⁻⁸

 

(iii) \(\large [(\frac {1}{7})⁻³]⁴\)

Solution:

\(\large [(\frac {1}{7})⁻³]⁴\)

= \(\large (\frac {1}{7})⁻³ˣ⁴\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large (\frac {1}{7})⁻¹²\)

 

Ans: \(\large [(\frac {1}{7})⁻³]⁴\) = \(\large (\frac {1}{7})⁻¹²\)



(iv) \(\large [(\frac {2}{5})⁻²]⁻³\) 

Solution:

\(\large [(\frac {2}{5})⁻²]⁻³\) 

= \(\large (\frac {2}{5})⁻²ˣ⁻³\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large (\frac {2}{5})⁶\) 

 

Ans: \(\large [(\frac {2}{5})⁻²]⁻³\) = \(\large (\frac {2}{5})⁶\) 

 

(v) (6⁵)⁴

Solution:

(6⁵)⁴ 

= (6⁵ˣ⁴) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= 6²⁰

 

Ans: (6⁵)⁴ = 6²⁰

 

(vi) \(\large [(\frac {6}{7})⁵]²\)

Solution:

\(\large [(\frac {6}{7})⁵]²\) 

= \(\large (\frac {6}{7})⁵ˣ²\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large (\frac {6}{7})¹⁰\)

 

Ans: \(\large [(\frac {6}{7})⁵]²\) = \(\large (\frac {6}{7})¹⁰\)

 

(vii) \(\large [(\frac {2}{3})⁻⁴]⁵\)

Solution:

\(\large [(\frac {2}{3})⁻⁴]⁵\)

= \(\large (\frac {2}{3})⁻⁴ˣ⁵\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large (\frac {2}{3})⁻²⁰\)

 

Ans: \(\large [(\frac {2}{3})⁻⁴]⁵\) = \(\large (\frac {2}{3})⁻²⁰\)

 

(viii) \(\large [(\frac {5}{8})³]⁻²\)

Solution:

\(\large [(\frac {5}{8})³]⁻²\) 

= \(\large [(\frac {5}{8})³ˣ⁻²\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large [(\frac {5}{8})⁻⁶\)

 

Ans: \(\large (\frac {5}{8})³]⁻²\) = \(\large [(\frac {5}{8})⁻⁶\)

 

(ix) \(\large [(\frac {3}{4})⁶]¹\)

Solution:

\(\large [(\frac {3}{4})⁶]¹\)

= \(\large (\frac {3}{4})⁶ˣ¹\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large [(\frac {3}{4})⁶\)

 

Ans: \(\large [(\frac {3}{4})⁶]¹\) = \(\large [(\frac {3}{4})⁶\)

 

(x) \(\large [(\frac {2}{3})⁻³]²\)

Solution:

\(\large [(\frac {2}{3})⁻³]²\)

= \(\large [(\frac {2}{3})⁻³ˣ²\) …[∵ (aᵐ)ⁿ = aᵐⁿ]

= \(\large [(\frac {2}{3})⁻⁶\)

 

Ans: \(\large [(\frac {2}{3})⁻³]²\) = \(\large [(\frac {2}{3})⁻⁶\)

2. Write the following numbers using positive indices:

(i) \(\large \frac {2}{3})\)⁻²

Solution:

\(\large \frac {2}{3})\)⁻²

= \(\large \frac {3}{2})\)² …[∵ \(\large \frac {a}{b})⁻ᵐ\) = \(\large \frac {b}{a})ᵐ\)]

 

Ans: \(\large \frac {2}{3})\)⁻² = \(\large \frac {3}{2})\)²

 

(ii) \(\large \frac {11}{3})\)⁻⁵

Solution:

\(\large \frac {11}{3})\)⁻⁵

= \(\large \frac {3}{11})\)⁵ …[∵ \(\large \frac {a}{b})⁻ᵐ\) = \(\large \frac {b}{a})ᵐ\)]

 

Ans: \(\large \frac {11}{3})\)⁻⁵ = \(\large \frac {3}{11})\)⁵

 

(iii) \(\large \frac {1}{6})\)⁻³

Solution:

\(\large \frac {1}{6})\)⁻³

= \(\large \frac {6}{1})\)³ …[∵ \(\large \frac {a}{b})⁻ᵐ\) = \(\large \frac {b}{a})ᵐ\)]

= 6³

 

Ans: \(\large \frac {1}{6})\)⁻³ = 6³

 

(iv) (y)⁻⁴

Solution:

(y)⁻⁴

= \(\large \frac {1}{y})\)⁴ …[∵ \(\large \frac {a}{b})⁻ᵐ\) = \(\large \frac {b}{a})ᵐ\)]

 

Ans: (y)⁻⁴ = \(\large \frac {1}{y})\)⁴

Practice Set 30

Find the square root. 

(i) 625 

Solution:

∴ 625 = 5 × 5 × 5 × 5

∴ \(\sqrt{625}\) = 5 × 5 = 25

(ii) 1225 

Solution:

∴ 1225 = 5 × 5 × 7 × 7

∴ \(\sqrt{1225}\) = 5 × 7 = 35

(iii) 289 

Solution:

∴ 289 = 17 × 17

∴ \(\sqrt{289}\) = 17

(iv) 4096 

Solution:

∴ 4096 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

∴ \(\sqrt{4096}\) = 2 × 2 × 2 × 2 × 2 × 2 = 64

(v) 1089

Solution:

∴ 1089 = 3 × 3 × 11 × 11

∴ \(\sqrt{1089}\) = 3 × 11 = 33