Maharashtra Board Textbook Solutions for Standard Seven

Chapter 5 – Operations on Rational Numbers

Practice Set 22

1. Carry out the following additions of rational numbers.

(i) \(\large \frac {5}{36}\) + \(\large \frac {6}{42}\)

Solution:

\(\large \frac {5}{36}\) + \(\large \frac {6}{42}\)

= \(\large \frac {5\,×\,7}{36\,×\,7}\) + \(\large \frac {6\,×\,6}{42\,×\,6}\)

= \(\large \frac {35}{252}\) + \(\large \frac {36}{242}\)

= \(\large \frac {35\,+\,36}{252}\) 

= \(\large \frac {71}{252}\) 

 

∴ \(\large \frac {5}{36}\) + \(\large \frac {6}{42}\) = \(\large \frac {71}{252}\) 

 

(ii) 1 \(\large \frac {2}{3}\) + 2 \(\large \frac {4}{5}\)

Solution:

1 \(\large \frac {2}{3}\) + 2 \(\large \frac {4}{5}\)

= \(\large \frac {1\,×\,3\,+\,2}{3}\) + \(\large \frac {2\,×\,5\,+\,4}{5}\)

= \(\large \frac {5}{3}\) + \(\large \frac {14}{5}\)

= \(\large \frac {5\,×\,5}{3\,×\,5}\) + \(\large \frac {14\,×\,3}{5\,×\,3}\)

= \(\large \frac {25}{15}\) + \(\large \frac {42}{15}\)

= \(\large \frac {25\,+\,42}{15}\)

 

∴ 1 \(\large \frac {2}{3}\) + 2 \(\large \frac {4}{5}\) = \(\large \frac {25\,+\,42}{15}\)

 

(iii) \(\large \frac {11}{17}\) + \(\large \frac {13}{19}\)

Solution:

\(\large \frac {11}{17}\) + \(\large \frac {13}{19}\)

= \(\large \frac {11\,×\,19}{17\,×\,19}\) + \(\large \frac {13\,×\,17}{19\,×\,17}\)

= \(\large \frac {209}{323}\) + \(\large \frac {221}{323}\)

= \(\large \frac {209\,+\,221}{323}\) 

= \(\large \frac {430}{323}\) 

 

∴ \(\large \frac {11}{17}\) + \(\large \frac {13}{19}\) = \(\large \frac {430}{323}\) 

 

(iv) 2 \(\large \frac {3}{11}\) + 1 \(\large \frac {3}{77}\)

Solution:

2 \(\large \frac {3}{11}\) + 1 \(\large \frac {3}{77}\)

= \(\large \frac {2\,×\,11\,+\,3}{11}\) + \(\large \frac {1\,×\,77\,+\,3}{77}\)

= \(\large \frac {25}{11}\) + \(\large \frac {80}{77}\)

= \(\large \frac {25\,×\,7}{11\,×\,7}\) + \(\large \frac {80}{77}\)

= \(\large \frac {175}{77}\) + \(\large \frac {80}{77}\)

= \(\large \frac {175\,+\,80}{77}\)

= \(\large \frac {255}{77}\)

 

∴ 2 \(\large \frac {3}{11}\) + 1 \(\large \frac {3}{77}\) = \(\large \frac {255}{77}\)

2. Carry out the following subtractions involving rational numbers.

(i) \(\large \frac {7}{11}\) – \(\large \frac {3}{7}\)

Solution:

\(\large \frac {7}{11}\) – \(\large \frac {3}{7}\)

= \(\large \frac {7\,×\,7}{11\,×\,7}\) – \(\large \frac {3\,×\,11}{7\,×\,11}\)

= \(\large \frac {49}{77}\) – \(\large \frac {33}{77}\)

= \(\large \frac {49\,–\,33}{77}\) 

= \(\large \frac {16}{323}\) 

 

∴ \(\large \frac {7}{11}\) – \(\large \frac {3}{7}\) = \(\large \frac {16}{323}\) 

 

(ii) \(\large \frac {13}{36}\) – \(\large \frac {2}{40}\)

Solution:

\(\large \frac {13}{36}\) – \(\large \frac {2}{40}\)

= \(\large \frac {13}{36}\) – \(\large \frac {2\,×\,1}{2\,×\,20}\)

= \(\large \frac {13}{36}\) – \(\large \frac {1}{20}\)

= \(\large \frac {13}{36}\) – \(\large \frac {1}{20}\)

= \(\large \frac {13\,×\,5}{36\,×\,5}\) – \(\large \frac {1\,×\,9}{20\,×\,9}\)

= \(\large \frac {65}{180}\) – \(\large \frac {9}{180}\)

= \(\large \frac {65\,–\,9}{180}\) 

= \(\large \frac {4\,×\,14}{4\,×\,45}\) 

= \(\large \frac {14}{45}\) 

 

∴ \(\large \frac {13}{36}\) – \(\large \frac {2}{40}\) = \(\large \frac {14}{45}\) 

 

(iii) 1 \(\large \frac {2}{3}\) – 3 \(\large \frac {5}{6}\)

Solution:

1 \(\large \frac {2}{3}\) – 3 \(\large \frac {5}{6}\)

= \(\large \frac {1\,×\,3\,+\,2}{3}\) – \(\large \frac {3\,×\,6\,+\,5}{6}\)

= \(\large \frac {5}{3}\) – \(\large \frac {23}{6}\)

= \(\large \frac {5\,×\,2}{3\,×\,2}\) – \(\large \frac {23}{6}\)

= \(\large \frac {10}{6}\) – \(\large \frac {23}{6}\)

= \(\large \frac {–\,13}{6}\) 

 

∴ 1 \(\large \frac {2}{3}\) – 3 \(\large \frac {5}{6}\) = \(\large \frac {–\,13}{6}\)

 

(iv) 4 \(\large \frac {1}{2}\) – 3 \(\large \frac {1}{3}\)

Solution:

4 \(\large \frac {1}{2}\) – 3 \(\large \frac {1}{3}\)

= \(\large \frac {4\,×\,2\,+\,1}{2}\) – \(\large \frac {3\,×\,3\,+\,1}{3}\)

= \(\large \frac {9}{2}\) – \(\large \frac {10}{3}\)

= \(\large \frac {9\,×\,3}{2\,×\,3}\) – \(\large \frac {10\,×\,2}{3\,×\,2}\)

= \(\large \frac {27}{6}\) – \(\large \frac {20}{6}\)

= \(\large \frac {27\,–\,20}{6}\) 

= \(\large \frac {7}{6}\) 

 

∴ 4 \(\large \frac {1}{2}\) – 3 \(\large \frac {1}{3}\) = \(\large \frac {7}{6}\) 

3. Multiply the following rational numbers.

(i) \(\large \frac {3}{11}\) × \(\large \frac {2}{5}\)

Solution: 

\(\large \frac {3}{11}\) × \(\large \frac {2}{5}\)

= \(\large \frac {3}{11}\) × \(\large \frac {2}{5}\)

= \(\large \frac {3\,×\,2}{11\,×\,5}\)

= \(\large \frac {6}{55}\)

 

∴ \(\large \frac {3}{11}\) × \(\large \frac {2}{5}\) = \(\large \frac {6}{55}\)

 

(ii) \(\large \frac {12}{5}\) × \(\large \frac {4}{15}\)

Solution: 

\(\large \frac {12}{5}\) × \(\large \frac {4}{15}\)

= \(\large \frac {12\,×\,4}{5\,×\,15}\)

= \(\large \frac {48}{75}\) 

= \(\large \frac {16\,×\,3}{25\,×\,3}\) 

= \(\large \frac {16}{25}\) 

 

∴ \(\large \frac {12}{5}\) × \(\large \frac {4}{15}\) =  \(\large \frac {16}{25}\) 

 

(iii) \(\large \frac {–\,8}{9}\) × \(\large \frac {3}{4}\)

Solution: 

\(\large \frac {–\,8}{9}\) × \(\large \frac {3}{4}\)

= \(\large \frac {–\,8\,×\,3}{9\,×\,4}\) 

= \(\large \frac {–\,24}{36}\) 

= \(\large \frac {–\,2\,×\,12}{3\,×\,12}\) 

= \(\large \frac {–\,2}{3}\) 

 

∴ \(\large \frac {–\,8}{9}\) × \(\large \frac {3}{4}\) = \(\large \frac {–\,2}{3}\) 

 

(iv) \(\large \frac {0}{6}\) × \(\large \frac {3}{4}\)

Solution: 

\(\large \frac {0}{6}\) × \(\large \frac {3}{4}\)

= 0 × \(\large \frac {3}{4}\)

= 0

 

∴ \(\large \frac {0}{6}\) × \(\large \frac {3}{4}\) = 0

4. Write the multiplicative inverse.

(i) \(\large \frac {2}{5}\)

Solution: 

Multiplicative inverse of \(\large \frac {2}{5}\) is \(\large \frac {5}{2}\)

 

(ii) \(\large \frac {–\,3}{8}\)

Solution: 

Multiplicative inverse of \(\large \frac {–\,3}{8}\) is \(\large \frac {–\,8}{3}\)

 

(iii) \(\large \frac {–17}{39}\)

Solution: 

Multiplicative inverse of \(\large \frac {–17}{39}\) is \(\large \frac {–39}{17}\)

 

(iv) 7

Solution: 

Multiplicative inverse of 7 is \(\large \frac {1}{7}\)

 

(v) – 7 \(\large \frac {1}{3}\)

Solution: 

– 7 \(\large \frac {1}{3}\)

= – \(\large \frac {7\,×\,3\,+\,1}{3}\)

= – \(\large \frac {22}{3}\)

 

∴ Multiplicative inverse of – \(\large \frac {22}{3}\) is – \(\large \frac {3}{22}\)

5. Carry out the divisions of rational numbers.

(i) \(\large \frac {40}{12}\) ÷ \(\large \frac {10}{4}\)

Solution: 

\(\large \frac {40}{12}\) ÷ \(\large \frac {10}{4}\)

= \(\large \frac {40}{12}\) × \(\large \frac {4}{10}\)

= \(\large \frac {4}{3}\)

 

∴  \(\large \frac {40}{12}\) ÷ \(\large \frac {10}{4}\) = \(\large \frac {4}{3}\)

 

(ii) \(\large \frac {–\,10}{11}\) ÷ \(\large \frac {–\,11}{10}\)

Solution: 

\(\large \frac {–\,10}{11}\) ÷ \(\large \frac {–\,11}{10}\)

= \(\large \frac {–\,10}{11}\) × \(\large \frac {–\,10}{11}\)

= \(\large \frac {100}{121}\)

 

∴ \(\large \frac {–\,10}{11}\) ÷ \(\large \frac {–\,11}{10}\) = \(\large \frac {100}{121}\)

 

(iii) \(\large \frac {–\,7}{8}\) ÷ \(\large \frac {–\,3}{6}\)

Solution: 

\(\large \frac {–\,7}{8}\) ÷ \(\large \frac {–\,3}{6}\)

= \(\large \frac {–\,7}{8}\) × \(\large \frac {–\,6}{3}\)

= \(\large \frac {7}{4}\) 

 

∴ \(\large \frac {–\,7}{8}\) ÷ \(\large \frac {–\,3}{6}\) = \(\large \frac {7}{4}\) 

 

(iv) \(\large \frac {2}{3}\) ÷ (– 4)

Solution: 

\(\large \frac {2}{3}\) ÷ (– 4)

= \(\large \frac {2}{3}\) ÷ \(\large \frac {1}{–\,4}\)

= \(\large \frac {–\,1}{6}\)

 

∴ \(\large \frac {2}{3}\) ÷ (– 4) = \(\large \frac {–\,1}{6}\)

 

(v) 2 \(\large \frac {1}{5}\) ÷ 5 \(\large \frac {3}{6}\)

Solution: 

2 \(\large \frac {1}{5}\) ÷ 5 \(\large \frac {3}{6}\)

= \(\large \frac {2\,×\,5\,+\,1}{5}\) ÷ \(\large \frac {5\,×\,6\,+\,3}{6}\)

= \(\large \frac {11}{5}\) ÷ \(\large \frac {33}{6}\)

= \(\large \frac {11}{5}\) × \(\large \frac {6}{33}\)

= \(\large \frac {11\,×\,6}{5\,×\,33}\)

= \(\large \frac {2}{5}\)

 

∴ 2 \(\large \frac {1}{5}\) ÷ 5 \(\large \frac {3}{6}\) = \(\large \frac {2}{5}\)

 

(vi) \(\large \frac {–\,5}{13}\) ÷ \(\large \frac {7}{26}\)

Solution: 

\(\large \frac {–\,5}{13}\) ÷ \(\large \frac {7}{26}\)

= \(\large \frac {–\,5}{13}\) × \(\large \frac {26}{7}\)

= \(\large \frac {–\,5\,×\,26}{13\,×\,7}\)

= \(\large \frac {–\,5\,×\,2}{7}\)

= \(\large \frac {–\,10}{7}\)

 

∴ \(\large \frac {–\,5}{13}\) ÷ \(\large \frac {7}{26}\) = \(\large \frac {–\,10}{7}\)

 

(vii) \(\large \frac {9}{11}\) ÷ (– 8)

Solution: 

 \(\large \frac {9}{11}\) ÷ (– 8)

= \(\large \frac {9}{11}\) × \(\large \frac {1}{–\,8}\)

= \(\large \frac {9\,×\,1}{11\,×\,–\,8}\) 

= \(\large \frac {9}{–\,88}\) 

= \(\large \frac {–\,9}{88}\) 

 

∴ \(\large \frac {9}{11}\) ÷ (– 8) = \(\large \frac {–\,9}{88}\) 

 

(viii) 5 ÷ \(\large \frac {2}{5}\)

Solution: 

5 ÷ \(\large \frac {2}{5}\)

= 5 × \(\large \frac {5}{3}\)

= \(\large \frac {5\,×\,5}{3}\)

= \(\large \frac {25}{3}\)

 

∴ 5 ÷ \(\large \frac {2}{5}\) = \(\large \frac {25}{3}\)

Practice Set 23

(i) \(\large \frac {2}{7}\), \(\large \frac {6}{7}\)

Solution:

2 < 3 < 4 < 5 < 6

∴ \(\large \frac {2}{7}\) < \(\large \frac {3}{7}\) < \(\large \frac {4}{7}\) < \(\large \frac {5}{7}\) < \(\large \frac {6}{7}\)

 

∴ The three rational numbers lying between \(\large \frac {2}{7}\) and \(\large \frac {6}{7}\) are \(\large \frac {3}{7}\), \(\large \frac {4}{7}\), \(\large \frac {5}{7}\)

 

(ii) \(\large \frac {4}{5}\), \(\large \frac {2}{3}\)

Solution:

\(\large \frac {4}{5}\), \(\large \frac {2}{3}\)

= \(\large \frac {4\,×\,6}{5\,×\,6}\), \(\large \frac {2\,×\,10}{3\,×\,10}\)

= \(\large \frac {24}{30}\), \(\large \frac {20}{30}\)

 

20 < 21 < 22 < 23 < 24 

∴ \(\large \frac {20}{30}\) < \(\large \frac {21}{30}\) < \(\large \frac {22}{30}\) < \(\large \frac {23}{30}\) < \(\large \frac {24}{30}\)

∴ \(\large \frac {4}{5}\) < \(\large \frac {21}{30}\) < \(\large \frac {22}{30}\) < \(\large \frac {23}{30}\) < \(\large \frac {2}{3}\)

 

∴ The three rational numbers lying between \(\large \frac {4}{5}\) and \(\large \frac {2}{3}\) are \(\large \frac {21}{30}\), \(\large \frac {22}{30}\)

 

(iii) – \(\large \frac {2}{3}\), \(\large \frac {4}{5}\)

Solution:

– \(\large \frac {2}{3}\), \(\large \frac {4}{5}\)

= – \(\large \frac {2\,×\,5}{3\,×\,5}\), \(\large \frac {4\,×\,3}{5\,×\,3}\)

= – \(\large \frac {10}{15}\), \(\large \frac {12}{15}\)

 

– 10 < –9 < 0 < 9 < 12 

∴ – \(\large \frac {10}{15}\) < – \(\large \frac {9}{15}\) < 0 < – \(\large \frac {9}{15}\) < \(\large \frac {12}{15}\)

∴ – \(\large \frac {2}{3}\) < – \(\large \frac {9}{15}\) < 0 < \(\large \frac {9}{15}\) < \(\large \frac {4}{5}\)

 

∴ The three rational numbers lying between – \(\large \frac {2}{3}\) and \(\large \frac {4}{5}\) are – \(\large \frac {9}{15}\), 0 and \(\large \frac {9}{15}\).

 

(iv) \(\large \frac {7}{9}\), – \(\large \frac {5}{9}\)

Solution:

– 5 < – 3 < 0 < 4 < 7

∴ – \(\large \frac {5}{9}\) < – \(\large \frac {3}{9}\) < 0 < \(\large \frac {4}{9}\) < \(\large \frac {7}{9}\)

 

∴ The three rational numbers lying between \(\large \frac {7}{9}\) and – \(\large \frac {5}{9}\) are – \(\large \frac {3}{9}\), 0 and \(\large \frac {4}{9}\).

 

(v) \(\large \frac {–\,3}{4}\), \(\large \frac {+\,5}{4}\)

Solution:

– 3 < – 1 < 1 < 3 < 5

∴ \(\large \frac {–\,3}{4}\) < \(\large \frac {–\,1}{4}\) < \(\large \frac {1}{4}\) < \(\large \frac {3}{4}\) < \(\large \frac {5}{4}\)

 

∴ The three rational numbers lying between \(\large \frac {–\,3}{4}\) and – \(\large \frac {5}{4}\) are \(\large \frac {–\,1}{4}\), \(\large \frac {1}{4}\) and \(\large \frac {3}{4}\).

 

(vi) \(\large \frac {7}{8}\), \(\large \frac {–\,5}{3}\)

Solution:

\(\large \frac {7}{8}\), \(\large \frac {–\,5}{3}\)

= \(\large \frac {7\,×\,3}{8\,×\,3}\), \(\large \frac {–\,5\,×\,8}{3\,×\,8}\)

= \(\large \frac {21}{24}\), \(\large \frac {–\,40}{24}\)

 

– 40 < – 30 < – 20 < 7 < 21

∴ \(\large \frac {–\,40}{24}\) < \(\large \frac {–\,30}{24}\) < \(\large \frac {–\,20}{24}\) < \(\large \frac {7}{24}\) < \(\large \frac {21}{24}\)

∴ \(\large \frac {–\,5}{3}\) < \(\large \frac {–\,30}{24}\) < \(\large \frac {–\,20}{24}\) < \(\large \frac {7}{24}\) < \(\large \frac {7}{8}\)

 

∴ The three rational numbers lying between \(\large \frac {7}{8}\), and \(\large \frac {–\,30}{24}\), \(\large \frac {–\,20}{24}\) and \(\large \frac {7}{24}\).

 

(vii) \(\large \frac {5}{7}\), \(\large \frac {11}{7}\)

Solution:

5 < 6 < 8 < 10 < 11

∴ \(\large \frac {5}{7}\) < \(\large \frac {6}{7}\) < \(\large \frac {8}{7}\) < \(\large \frac {10}{7}\) < \(\large \frac {11}{7}\)

 

∴ The three rational numbers lying between \(\large \frac {5}{7}\) and \(\large \frac {11}{7}\) are \(\large \frac {6}{7}\), \(\large \frac {8}{7}\) and \(\large \frac {10}{7}\).

 

(viii) 0, \(\large \frac {–\,3}{4}\)

Solution:

0, \(\large \frac {–\,3}{4}\)

= \(\large \frac {0\,×\,8}{1\,×\,8}\), \(\large \frac {–\,3\,×\,2}{4\,×\,2}\)

= \(\large \frac {0}{8}\), \(\large \frac {–\,6}{8}\)

 

∴ – 6 < – 5 < – 4 < – 1 < 0

∴ \(\large \frac {–\,6}{8}\) < \(\large \frac {–\,5}{8}\) < \(\large \frac {–\,3}{8}\) < \(\large \frac {–\,1}{8}\) < \(\large \frac {0}{8}\)

 

∴ The three rational numbers lying between 0 and \(\large \frac {–\,3}{4}\) are \(\large \frac {–\,5}{8}\), \(\large \frac {–\,3}{8}\) and \(\large \frac {–\,1}{8}\).

Practice set 24

Write the following rational numbers in decimal form.

(i) \(\large \frac {13}{4}\)
Solution:

IMG 20231014 125603 Chapter 5 – Operations on Rational Numbers

∴ \(\large \frac {13}{4}\) = 3.25

 

(ii) \(\large \frac {–\,7}{8}\)

Solution:

\(\large \frac {–\,7}{8}\)

= (– 1)\(\large \frac {7}{8}\)

IMG 20231014 125630 Chapter 5 – Operations on Rational Numbers

∴ \(\large \frac {–\,7}{8}\) = – 0.875

 

(iii) 7 \(\large \frac {3}{5}\)

Solution:

7 \(\large \frac {3}{5}\)

= \(\large \frac {7\,×\,5\,+\,3}{5}\)

= \(\large \frac {38}{5}\)

IMG 20231014 125510 Chapter 5 – Operations on Rational Numbers

∴ 7 \(\large \frac {3}{5}\) = 7.6

 

(iv) \(\large \frac {5}{12}\)

Solution:

IMG 20231014 125618 Chapter 5 – Operations on Rational Numbers

∴ \(\large \frac {5}{12}\) = \(0.41\overset{\boldsymbol\cdot}6\)

 

(v) \(\large \frac {22}{7}\)

Solution:

IMG 20231014 125529 Chapter 5 – Operations on Rational Numbers

∴ \(\large \frac {22}{7}\) = \(3.\overset{\_\_\_\_\_\_\_}{142857}\)

 

(vi) \(\large \frac {4}{3}\)

Solution:

IMG 20231014 125643 Chapter 5 – Operations on Rational Numbers

∴ \(\large \frac {4}{3}\) = \(1.\overset{\boldsymbol\cdot}3\)

 

(vii) \(\large \frac {7}{9}\)

Solution:

IMG 20231014 125548 Chapter 5 – Operations on Rational Numbers

∴ \(\large \frac {7}{9}\) = \(0.\overset{\boldsymbol\cdot}7\)

Practice set 25

Simplify the following expressions.

1. 50 × 5 ÷ 2 + 24 

Solution:

50 × 5 ÷ 2 + 24 

= 250 ÷ 2 + 24

= 125 + 24

= 149

 

∴ 50 × 5 ÷ 2 + 24 = 149

 

2. (13 × 4) ÷ 2 – 26

Solution:

(13 × 4) ÷ 2 – 26

= 52 ÷ 2 – 26

= 26 – 26

= 0 

 

∴ (13 × 4) ÷ 2 – 26 = 0

 

3. 140 ÷ [(– 11) × (– 3) – (– 42) ÷ 14 – 1)] 

Solution:

140 ÷ [(– 11) × (– 3) – (– 42) ÷ 14 – 1)] 

= 140 ÷ [33 + 42 ÷ 14 – 1]

= 140 ÷ [33 + 3 – 1]

= 140 ÷ 35

= 4

 

∴ 140 ÷ [(– 11) × (– 3) – (– 42) ÷ 14 – 1)] = 4

 

4. {(220 – 140) + [10 × 9 + (– 2 × 5)]} – 100

Solution:

{(220 – 140) + [10 × 9 + (– 2 × 5)]} – 100

= {80 + [90 – 10]} – 100

= {80 + 80} – 100

= 160 – 100

= 60

 

∴ {(220 – 140) + [10 × 9 + (– 2 × 5)]} – 100 = 60

 

5. \(\large \frac {3}{5}\) + \(\large \frac {3}{8}\) ÷ \(\large \frac {6}{4}\)

Solution:

\(\large \frac {3}{5}\) + \(\large \frac {3}{8}\) ÷\(\large \frac {6}{4}\)

= \(\large \frac {3}{5}\) + \(\large \frac {3}{8}\) × \(\large \frac {4}{6}\)

= \(\large \frac {3}{5}\) + \(\large \frac {1}{4}\)

= \(\large \frac {3\,×\,4}{5\,×\,4}\) + \(\large \frac {1\,×\,5}{4\,×\,5}\)

= \(\large \frac {12}{20}\) + \(\large \frac {5}{20}\)

= \(\large \frac {12\,+\,5}{20}\)

= \(\large \frac {17}{20}\)

 

∴ \(\large \frac {3}{5}\) + \(\large \frac {3}{8}\) ÷ \(\large \frac {6}{4}\) = \(\large \frac {17}{20}\)