Maharashtra Board Textbook Solutions for Standard Seven

Chapter 14 - Algebraic Formulae - Expansion of Squares

Practice set 50

1. Expand.

(i) (5a + 6b)²

Solution: 

Here, 

a = 5a and b = 6b

 

We know that, 

(a + b)² = a² + 2ab + b²

 

∴ (5a + 6b)² = (5a)² + 2 × 5a × 6b + (6b)²

∴ (5a + 6b)² = 25a² + 60ab + 36b²

 

Ans: (5a + 6b)² = 25a² + 60ab + 36b²

(ii) \((\large \frac {a}{2} – \large \frac {b}{3})\)²

Solution: 

Here, 

a = \(\large \frac {a}{2}\) and b = \(\large \frac {b}{3}\)

 

We know that, 

(a + b)² = a² + 2ab + b²

 

∴ \((\large \frac {a}{2} – \large \frac {b}{3}\))² = (\(\large \frac {a}{2}\))² + 2 × \(\large \frac {a}{2}\) × \(\large \frac {b}{3}\) + (\(\large \frac {b}{3}\))²

∴ \((\large \frac {a}{2} – \large \frac {b}{3}\))² = \(\large \frac {a²}{4}\) + \(\large \frac {ab}{3}\) + \(\large \frac {b²}{9}\)


Ans: \((\large \frac {a}{2} – \large \frac {b}{3}\))² = \(\large \frac {a²}{4}\) + \(\large \frac {ab}{3}\) + \(\large \frac {b²}{9}\)

(iii) (2p – 3q)²

Solution: 

Here, 

a = 2p and b = 3q

 

We know that, 

(a – b)² = a² – 2ab + b²

 

∴ (2p – 3q)² = (2p)² – 2 × 2p × 3q + (3q)²

∴ (2p – 3q)² = 4p² – 12pq + 9q²

 

Ans: (2p – 3q)² = 4p² – 12pq + 9q²

(iv) \((x – \large \frac {2}{x}\))²

Solution: 

Here, 

a = x and b = \(\large \frac {2}{x}\)

 

We know that, 

(a – b)² = a² – 2ab + b²

 

∴ \((x – \large \frac {2}{x}\))² = (x)² – 2 × x × \(\large \frac {2}{x}\) + (\(\large \frac {2}{x}\))²

∴ \((x – \large \frac {2}{x}\))² = x² – 4 + \(\large \frac {4}{x²}\)

 

Ans: \((x – \large \frac {2}{x}\))² = x² – 4 + \(\large \frac {4}{x²}\)

(v) (ax + by)²

Solution: 

Here, 

a = ax and b = by

 

We know that, 

(a + b)² = a² + 2ab + b²

 

∴ (ax + by)² = (ax)² + 2 × ax × by + (by)²

∴ (ax + by)² = a²x² + 2axby + b²y²

 

Ans: (ax + by)² = a²x² + 2axby + b²y²

(vi) (7m – 4)²

Solution: 

Here, 

a = 7m and b = 4

 

We know that, 

(a – b)² = a² – 2ab + b²

 

∴ (7m – 4)² = (7m)² – 2 × 7m × 4 + (4)²

∴ (7m – 4)² = 49m² – 56m + 16

 

Ans: (7m – 4)² = 49m² – 56m + 16

(vii) \((x – \large \frac {1}{2}\))²

Solution: 

Here, 

a = x and b = \(\large \frac {1}{2}\)

 

We know that, 

(a – b)² = a² – 2ab + b²

 

∴ \((x – \large \frac {1}{2}\))² = (x)² – 2 × x × \(\large \frac {1}{2}\) + (\(\large \frac {1}{2}\))²

∴ \((x – \large \frac {1}{2}\))² = x² – x + \(\large \frac {1}{4}\)

 

Ans: \((x – \large \frac {1}{2}\))² = x² – x + \(\large \frac {1}{4}\)

(viii) \((a – \large \frac {1}{a}\))²

Solution: 

Here, 

a = a and b = \(\large \frac {1}{a}\)

 

We know that, 

(a – b)² = a² – 2ab + b²

 

∴ \((a – \large \frac {1}{a}\))² = (a)² – 2 × a × \(\large \frac {1}{a}\) + (\(\large \frac {1}{a}\))²

∴ \((a – \large \frac {1}{a}\))² = a² – 2 + \(\large \frac {1}{a²}\)

 

Ans: \((a – \large \frac {1}{a}\))² = a² – 2 + \(\large \frac {1}{a²}\)

2. Which of the options given below is the square of the binomial \(8 – \large \frac {1}{x}\) ?

(i) 64 – \(\large \frac {1}{x²}\) 

(ii) 64 + \(\large \frac {1}{x²}\) 

(iii) 64 – \(\large \frac {16}{x}\) + \(\large \frac {1}{x²}\) 

(iv) 64 + \(\large \frac {16}{x}\) + \(\large \frac {1}{x²}\)

Solution: 

In \((8 – \large \frac {1}{x}\))², 

a = 8 and b = \(large \frac {1}{x}\)

 

We know that, 

(a – b)² = a² – 2ab + b²

 

∴ \((8 – \large \frac {1}{x}\))² = (8)² – 2 × 8 × \(large \frac {1}{x}\) + \((large \frac {1}{x}\))²

∴ \((8 – \large \frac {1}{x}\))² = 64 – \(\large \frac {16}{x}\) + \(\large \frac {1}{x²}\) 

 

OPTION (C) :  64 – \(\large \frac {16}{x}\) + \(\large \frac {1}{x²}\) 

3. Of which of the binomials given below is m²n² + 14mnpq + 49p²q² the expansion?

(i) (m + n) (p + q) 

(ii) (mn – pq)

(iii) (7mn + pq) 

(iv) (mn + 7pq)

Solution: 

We know that,

(a + b)² = a² + 2ab + b²

 

∴ m²n² + 14mnpq + 49p²q² = (mn)² + 2 × mn × 7pq + (7pq)²

∴ m²n² + 14mnpq + 49p²q² = (mn + 7pq)²

 

OPTION (D) : (mn + 7pq)

4. Use an expansion formula to find the values.

(i) (997)² 

Solution: 

We can write 997 as (1000 – 3)

∴ 997² = (1000 – 3)²

Here a = 1000 and b = 3

 

We know that,

(a – b)² = a² – 2ab + b²

 

∴ (1000 – 3)² = 1000² – 2 × 1000 × 3 + 3²

∴ (1000 – 3)² = 1000000 – 6000 + 9

∴ (1000 – 3)² = 1000000 – 5991

∴ (1000 – 3)² = 994009

 

Ans: (997)² = 994009

(ii) (102)² 

Solution: 

We can write 102 as (100 + 2)

∴ (102)² = (100 + 2)²

Here a = 100 and b = 2

 

We know that,

(a + b)² = a² + 2ab + b²

 

∴ (100 + 2)² = 100² + 2 × 100 × 2 + 2²

∴ (100 + 2)² = 10000 + 400 + 4

∴ (100 + 2)² = 1000000 + 404

∴ (100 + 2)² = 10404

 

Ans: (102)² = 10404

(iii) (97)²

Solution: 

We can write 997 as (100 – 3)

∴ 97² = (100 – 3)²

Here a = 100 and b = 3

 

We know that,

(a – b)² = a² – 2ab + b²

 

∴ (100 – 3)² = 100² – 2 × 100 × 3 + 3²

∴ (100 – 3)² = 10000 – 600 + 9

∴ (100 – 3)² = 10000 – 591

∴ (100 – 3)² = 9409

 

Ans: (97)² = 9409

(iv) (1005)²

Solution: 

We can write 997 as (1000 + 5)

∴ 997² = (1000 + 5)²

Here a = 1000 and b = 5

 

We know that,

(a + b)² = a² + 2ab + b²

 

∴ (1000 + 5)² = 1000² + 2 × 1000 × 5 + 5²

∴ (1000 + 5)² = 1000000 + 10000 + 25

∴ (1000 + 5)² = 1000000 + 10025

∴ (1000 + 5)² = 1010025

 

Ans: (1005)² = 1010025

Practice set 51

1. Use the formula to multiply the following.

(i) (x + y) (x – y) 

Solution: 

Here, a = x and b = y

 

We know that, 

(a + b)(a – b) = a² – b²

 

∴ (x + y)(x – y) = x² – y²

 

Ans: (x + y)(x – y) = x² – y²

(ii) (3x – 5) (3x + 5)

Solution: 

Here, a = 3x and b = 5

 

We know that, 

(a + b)(a – b) = a² – b²

 

∴ (3x – 5) (3x + 5) = (3x)² – (5)²

∴ (3x – 5) (3x + 5) = 9x² – 25

 

Ans: (3x – 5) (3x + 5) = 9x² – 25

(iii) (a + 6) (a – 6) 

Solution: 

Here, a = a and b = 6

 

We know that, 

(a + b)(a – b) = a² – b²

 

∴ (a + 6) (a – 6) = (a)² – (6)²

∴ (a + 6) (a – 6) = a² – 36

 

Ans: (a + 6) (a – 6) = a² – 36

(iv) \((\large \frac {x}{5}\) + 6\()\) \((\large \frac {x}{5}\) – 6\()\)

Solution: 

Here, a = \(\large \frac {x}{5}\) and b = 6

 

We know that, 

(a + b)(a – b) = a² – b²

 

∴ \((\large \frac {x}{5}\) + 6\()\) \((\large \frac {x}{5}\) – 6\()\) = (\(\large \frac {x}{5}\))² – (6)²

∴ \((\large \frac {x}{5}\) + 6\()\) \((\large \frac {x}{5}\) – 6\()\) = \(\large \frac {x²}{25}\) – 36

 

Ans: \((\large \frac {x}{5}\) + 6\()\) \((\large \frac {x}{5}\) – 6\()\) = \(\large \frac {x²}{25}\) – 36

2. Use the formula to find the values.

(i) 502 × 498 

Solution: 

We can write 502 as (500 + 2) and 498 as (500 – 2)

∴ 502 × 498 = (500 + 2) (500 – 2)

Here a = 500 and b = 2

 

(a + b)(a – b) = a² – b²

 

∴ (500 + 2) (500 – 2) = (500)² – (2)²

∴ (500 + 2) (500 – 2) = 250000 – 4

∴ (500 + 2) (500 – 2) = 249996

 

Ans: 502 × 498 = 249996

(ii) 97 × 103 

Solution: 

We can write 97 as (100 – 3) and 103 as (100 + 3)

∴ 97 × 103 = (100 – 3) (100 + 3)

Here a = 100 and b = 3

 

(a + b)(a – b) = a² – b²

 

∴ (100 – 3) (100 + 3) = (100)² – (3)²

∴ (100 – 3) (100 + 3) = 10000 – 9

∴ (100 – 3) (100 + 3) = 9991

 

Ans: 97 × 103 = 9991

(iii) 54 × 46 

Solution: 

We can write 54 as (50 + 4) and 46 as (50 – 4)

∴ 54 × 46 = (50 + 4) (50 – 4)

Here a = 50 and b = 4

 

(a + b)(a – b) = a² – b²

 

∴ (50 + 4) (50 – 4) = (50)² – (4)²

∴ (50 + 4) (50 – 4) = 2500 – 16

∴ (50 + 4) (50 – 4) = 2484

 

Ans: 54 × 46 = 2484

(iv) 98 × 102

Solution: 

We can write 98 as (100 – 2) and 102 as (100 + 2)

∴ 98 × 102 = (100 – 2) (100 + 2)

Here a = 100 and b = 2

 

(a + b)(a – b) = a² – b²

 

∴ (100 – 2) (100 + 2) = (100)² – (2)²

∴ (100 – 2) (100 + 2) = 10000 – 4

∴ (100 – 2) (100 + 2) = 9996

 

Ans: 98 × 102 = 9996

Practice set 52

Factorise the following expressions and write them in the product form.

(i) 201 a³b²

Solution:

201 a³b² = 201 × a³ × b²

∴ 201 a³b² = 3 × 67 × a × a × a × b × b

 

Ans: 201 a³b² = 3 × 67 × a × a × a × b × b

 

(ii) 91 xyt²

Solution:

91 xyt² = 91 × x × y × t²

∴ 91 xyt² = 7 × 13 × x × y × t × t

 

Ans: 91 xyt² = 7 × 13 × x × y × t × t

 

(iii) 24 a²b²

Solution:

24 a²b² = 24 × a² × b²

∴ 24 a²b² = 2 × 2 × 2 × 3 × a × a × b × b

 

Ans: 24 a²b² = 2 × 2 × 2 × 3 × a × a × b × b

 

(iv) tr²s³

Solution:

tr²s³ = t × r² × s³

∴ tr²s³ = t × r × r × s × s × s

 

Ans: tr²s³ = t × r × r × s × s × s

Practice set 53

Factorise the following expressions.

(i) p² – q² 

Solution: 

In p² – q² 

a = p and b = q

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ p² – q² = (p + q)(p – q)

 

Ans: p² – q² = (p + q)(p – q)

(ii) 4x² – 25y² 

Solution: 

4x² – 25y² = (2x)² – (5y)²

 

In (2x)² – (5y)²

a = 2x and b = 5y

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ (2x)² – (5y)² = (2x + 5y)(2x – 5y)

 

Ans: 4x² – 25y² = (2x + 5y)(2x – 5y)

(iii) y² – 4 

Solution: 

y² – 4 = y² – 2² 

 

In y² – 2²

a = y and b = 2

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ y² – 2² = (y + 2)(y – 2)

 

Ans: y² – 2² = (y + 2)(y – 2)

(iv) p² – \(\large \frac {1}{25}\)

Solution: 

p² – \(\large \frac {1}{25}\) = p² – (\(\large \frac {1}{5}\))²

 

In p² – (\(\large \frac {1}{5}\))²

a = p and b = \(\large \frac {1}{5}\)

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ p² – (\(\large \frac {1}{5}\))² = (p + \(\large \frac {1}{5}\))(p – \(\large \frac {1}{5}\))

 

Ans: p² – \(\large \frac {1}{25}\) = (p + \(\large \frac {1}{5}\))(p – \(\large \frac {1}{5}\))

(v) 9x² – \(\large \frac {1}{16}\) y²

Solution: 

9x² – \(\large \frac {1}{16}\) y² = (3x)² – (\(\large \frac {1}{4}\) y)²

 

In (3x)² – (\(\large \frac {1}{4}\) y)²,

a = 3x and b = \(\large \frac {1}{4}\) y

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ (3x)² – (\(\large \frac {1}{4}\) y)² = (3x + \(\large \frac {1}{4}\) y)(3x – \(\large \frac {1}{4}\) y)

 

Ans: 9x² – \(\large \frac {1}{16}\) y² = (3x + \(\large \frac {1}{4}\) y)(3x – \(\large \frac {1}{4}\) y)

(vi) x² – \(\large \frac {1}{x²}\)

Solution: 

x² – \(\large \frac {1}{x²}\) = x² – \((\large \frac {1}{x})\)²

 

In x² – \((\large \frac {1}{x})\)²,

a = x and b = \(\large \frac {1}{x}\)

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ x² – \((\large \frac {1}{x})\)² = (x + \(\large \frac {1}{x})\)(x – \(\large \frac {1}{x})\)

 

Ans: x² – \(\large \frac {1}{x²}\) = (x + \(\large \frac {1}{x})\)(x – \(\large \frac {1}{x})\)

(vii) a²b – ab 

Solution: 

a²b – ab = a (ab – b)

∴ a²b – ab = ab (a – 1)

 

Ans: a²b – ab = ab (a – 1)

(viii) 4x²y – 6x²

Solution: 

4x²y – 6x² = 2 (2x²y – 3x²)

∴ 4x²y – 6x² = 2x² (2y – 3)

 

Ans: 4x²y – 6x² = 2x² (2y – 3)

(ix) \(\large \frac {1}{2}\)y² – 8z²

Solution: 

\(\large \frac {1}{2}\)y² – 8z² = \(\large \frac {1}{2}\)y² – \(\large \frac {1}{2}\) × 16z²

∴ \(\large \frac {1}{2}\)y² – 8z² = \(\large \frac {1}{2}\) [y² – 16z²]

∴ \(\large \frac {1}{2}\)y² – 8z² = \(\large \frac {1}{2}\) [y² – (4z)²]

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ \(\large \frac {1}{2}\)y² – 8z² = \(\large \frac {1}{2}\) [(y + 4z)(y – 4z)]

 

Ans: \(\large \frac {1}{2}\)y² – 8z² = \(\large \frac {1}{2}\) [(y + 4z)(y – 4z)]

(x) 2x² – 8y²

Solution: 

2x² – 8y² = 2 (x² – 4y²)

∴ 2x² – 8y² = 2 [x² – (2y)²]

 

We know that,

(a² – b²) = (a + b)(a – b)

 

∴ 2x² – 8y² = 2 [(x + 2y)(x – 2y)]

 

Ans: 2x² – 8y² = 2 [(x + 2y)(x – 2y)]