Maharashtra Board Textbook Solutions for Standard Nine

Chapter 2 – Real Numbers

Practice set 2.1

1. Classify the decimal form of the given rational numbers into terminating and non-terminating recurring type.

(i) \(\large \frac {13}{5}\)

Solution: 

In\(\large \frac {13}{5}\), the denominator is 5 and has only 5 as the prime factor.

Thus, \(\large \frac {13}{5}\) has the terminating decimal representation.

 

(ii) \(\large \frac {2}{11}\)

Solution: 

In \(\large \frac {2}{11}\), 11 is the denominator which has prime factors other than 2 and 5.

∴ \(\large \frac {2}{11}\) has recurring and non terminating decimal representation.

 

(iii) \(\large \frac {29}{16}\)

Solution: 

In \(\large \frac {29}{16}\), 16 is the denominator and 

16 = 2 × 2 × 2 × 2

Thus, denominator has only 2 as prime factors.

∴ \(\large \frac {29}{16}\) has the terminating decimal representation.

 

(iv) \(\large \frac {17}{125}\)

Solution: 

In \(\large \frac {17}{125}\), 125 is the denominator and 125 = 5 × 5 × 5

Thus, the denominator has only 5 as prime factors.

∴ \(\large \frac {17}{125}\) has the terminating decimal representation.

 

(v) \(\large \frac {11}{6}\)

Solution: 

In \(\large \frac {11}{6}\), 6 is the denominator and 6 = 2 × 3

Thus, the denominator has prime factors other than 2 and 5.

∴ \(\large \frac {11}{6}\) has recurring and non terminating decimal representation.

2. Write the following rational numbers in decimal form. 

(i) \(\large \frac {127}{200}\)

Solution: 

\(\large \frac {127}{200}\)

= \(\large \frac {127}{2\,×\,100}\)

= \(\large \frac {63.5}{100}\)

= 0.635 

 

∴ \(\large \frac {127}{200}\) = 0.635

(ii) \(\large \frac {25}{99}\)

Solution:

IMG 20231015 101442 Chapter 2 – Real Numbers

∴ \(\large \frac {25}{99}\) = \(0.\overline{25}\)

(iii) \(\large \frac {23}{7}\)

Solution:

IMG 20231015 101457 Chapter 2 – Real Numbers

∴ \(\large \frac {23}{7}\) = \(3.\overline{285714}\)

(iv) \(\large \frac {4}{5}\)

Solution: 

\(\large \frac {4}{5}\)

= \(\large \frac {4\,×\,2}{5\,×\,2}\)

= \(\large \frac {8}{10}\)

= 0.8

 

∴ \(\large \frac {4}{5}\) = 0.8

(v) \(\large \frac {17}{8}\)

Solution:

IMG 20231015 101512 Chapter 2 – Real Numbers

∴ \(\large \frac {17}{8}\) = 2.125

3. Write the following rational numbers in \(\large \frac {p}{q}\) form. 

(i) \(0.\dot6\) 

Solution: 

Let x = 0.666… = \(0.\dot6\) …(i)

Multiplying both the sides by 10, we get,

10x = 6.666… =  \(6.\dot6\) …(ii)

 

Subtracting (i) from (ii), we get,

10x – x =  \(6.\dot6\) –  \(0.\dot6\)

∴ 9x = 6

∴ x = \(\large \frac {6}{9}\)

∴ x = \(\large \frac {2}{3}\)

 

∴  \(0.\dot6\) = \(\large \frac {2}{3}\)

 

(ii) 0.37 

Solution: 

Let x = 0.3737… =  \(0.\overline{37}\) …(i)

Multiplying both the sides by 100 we get,

100x = 37.3737… = \(37.\overline{37}\) …(ii)

 

Subtracting (i) from (ii), we get,

100x – x = \(37.\overline{37}\) – \(0.\overline{37}\)

∴ 99x = 37

∴ x = \(\large \frac {37}{99}\)

 

∴ \(0.\overline{37}\) = \(\large \frac {37}{99}\)

 

(iii) 3.17 

Solution: 

Let x = 3.171717… = \(3.\overline{17}\)  …(i)

Multiplying both the sides by 100 we get,

100x = 317.1717… = \(317.\overline{17}\) …(ii)

Subtracting (i) from (ii), we get,

100x – x = \(317.\overline{17}\) – \(3.\overline{17}\)

∴ 99x = 314

∴ x = \(\large \frac {314}{99}\)

 

∴ \(3.\overline{17}\) = \(\large \frac {314}{99}\)

 

(iv) \(15.\overline{89}\) 

Solution: 

Let x = 15.8989… = \(15.\overline{89}\) …(i)

Multiplying both the sides by 100, we get,

100x = 1589.8989… = \(1589.\overline{89}\) …(ii)

 

Subtracting (i) from (ii), we get,

100x – x = \(1589.\overline{89}\) – \(15.\overline{89}\)

∴ 99x = 1574

∴ x = \(\large \frac {1564}{99}\)

 

∴ \(15.\overline{89}\) = \(\large \frac {1564}{99}\)

 

(v) \(2.\overline{514}\)

Solution: 

Let x = 2.514514… = \(2.\overline{514}\) …(i)

Multiplying both the sides by 1000, we get,

1000x = 2514.514… =  \(2514.\overline{514}\) …(ii)

 

Subtracting (i) from (ii)

1000x – x =  \(2514.\overline{514}\) –  \(2.\overline{514}\)

∴ 999x = 2512

∴ x = \(\large \frac {2512}{999}\) 

 

∴ \(2.\overline{514}\) = \(\large \frac {2512}{999}\) 

Practice set 2.2

(1) Show that 4 \(\sqrt{2}\) is an irrational number. 

Solution:

Let 4 \(\sqrt{2}\) be a rational number.

∴ 4 \(\sqrt{2}\) = \(\large \frac {p}{q}\)

∴ \(\sqrt{2}\) = \(\large \frac {p}{4q}\) …(i)

 

Now, 

\(\large \frac {p}{q}\) is a rational number then \(\large \frac {p}{4q}\) is also a rational number.

 

Then, \(\sqrt{2}\) is a rational number …[from (i)]

But, it contradicts the fact that \(\sqrt{2}\) is an irrational number.

∴ \(\sqrt{2}\) ≠ \(\large \frac {p}{4q}\)

 

Our assumption is wrong.

 

Hence, 4 \(\sqrt{2}\) is an irrational number.

(2) Prove that 3 + \(\sqrt{5}\) is an irrational number. 

Solution:

Let 3 + \(\sqrt{5}\) be a rational number.

∴ 3 + \(\sqrt{5}\) = \(\large \frac {p}{q}\)

∴ \(\sqrt{5}\) = \(\large \frac {p}{q}\) – 3 …(i)

 

Now, 

\(\large \frac {p}{q}\) is a rational number then \(\large \frac {p}{q}\) – 3 is also a rational number.

 

Then, \(\sqrt{5}\) is a rational number …[from (i)]

 

But, it contradicts the fact that \(\sqrt{5}\) is an irrational number.

∴ \(\sqrt{5}\) ≠ \(\large \frac {p}{q}\) – 3

 

Our assumption is wrong.

 

Hence, 3 + \(\sqrt{5}\) is an irrational number.

(3) Represent the numbers \(\sqrt{5}\) and \(\sqrt{10}\) on a number line.

Solution:

(i) To represent \(\sqrt{5}\) on the number line:

IMG 20231015 115511 Chapter 2 – Real Numbers

Point A corresponds to \(\sqrt{5}\) on the number line.

 

(ii) To represent \(\sqrt{10}\) on the number line:

IMG 20231015 115535 Chapter 2 – Real Numbers

Point A corresponds to \(\sqrt{10}\) on the number line.

(4) Write any three rational numbers between the two numbers given below. 

(i) 0.3 and – 0.5 

Solution:

We know that,

0.3 = 0.30 and – 0.5 = – 0.50

 

∴ 0.30 > 0.29 > 0.28 > 0.27 > …… > – 0.50

 

∴ Three rational numbers between 0.3 and  – 0.5 are 0.25, 0.20, – 0.12.

 

(ii) – 2.3 and – 2.33

Solution:

We know that,

– 2.3 = – 2.300 and – 2.33 = – 2.330

 

∴ – 2.300 > – 2.301 > – 2.302 > – 2.303 > … > – 2.330

 

∴ Three rational numbers between –2.3 and – 2.33 are – 2.302, – 2.304, – 2.306.

 

(iii) 5.2 and 5.3

Solution:

We know that,

5.2 = 5.20 and 5.3 = 5.30

 

∴ 5.20 < 5.21 < 5.22 < 5.23 < … < 5.30

 

∴ Three rational numbers between 5.2 and 5.3 are 5.21, 5.22, 5.23.

 

(iv) – 4.5 and – 4.6

Solution:

Now – 4.5 = – 4.50 and – 4.6 = – 4.60

 

∴ – 4.50 > – 4.51 > – 4.52 > – 4.53 > … > – 4.60

 

∴ Three rational numbers between –4.5 and – 4.6 are – 4.51, – 4.52, – 4.53.

Practice set 2.3

(1) State the order of the surds given below. 

(i) \(\sqrt[3]{2}\) 

Ans: The order of the surd is 3

 

(ii) 5\(\sqrt{12}\) 

Ans: The order of the surd is 2

 

(iii) \(\sqrt[4]{10}\) 

Ans: The order of the surd is 4

 

(iv) \(\sqrt[2]{39}\)  

Ans: The order of the surd is 2

 

(v) \(\sqrt[3]{18}\) 

Ans: The order of the surd is 3

(2) State which of the following are surds. Justify. 

(i) \(\sqrt[3]{51}\) 

Ans: \(\sqrt[3]{51}\) is a surd

 

(ii) \(\sqrt[4]{16}\) 

Ans: \(\sqrt[4]{16}\) = 2

Hence it is not a surd

 

(iii) \(\sqrt[5]{81}\) 

Ans: \(\sqrt[5]{81}\) is a surd

 

(iv) \(\sqrt[2]{256}\)  

Ans: \(\sqrt[2]{256}\) = 16

Hence it is not a surd

 

(v) \(\sqrt[3]{64}\)  

Ans: \(\sqrt[3]{64}\) = 4

Hence it is not a surd

 

(vi) \(\sqrt{\large \frac {22}{7}}\)

Ans: \(\sqrt{\large \frac {22}{7}}\) is a surd

(3) Classify the given pair of surds into like surds and unlike surds. 

(i) \(\sqrt{52}\) , 5 \(\sqrt{13}\) 

Solution:

\(\sqrt{52}\) 

= \(\sqrt{4\,×\,13}\)

= \(\sqrt{4}\) × \(\sqrt{13}\)

= 2 \(\sqrt{13}\)

 

2 \(\sqrt{13}\) and 5 \(\sqrt{13}\) are like surds.

∴ \(\sqrt{52}\) and 5 \(\sqrt{13}\) are like surds.

 

(ii) \(\sqrt{68}\) , 5 \(\sqrt{3}\) 

Solution:

\(\sqrt{68}\)

= \(\sqrt{4\,×\,17}\)

= \(\sqrt{4}\) × \(\sqrt{17}\)

= 2 \(\sqrt{17}\)

 

Here 2 \(\sqrt{17}\) and 5 \(\sqrt{3}\) are not like surds.

∴ \(\sqrt{68}\) and 5 \(\sqrt{3}\) are not like surds.

 

(iii) 4 \(\sqrt{18}\) , 7 \(\sqrt{2}\)

Solution:

4 \(\sqrt{18}\)

= 4 \(\sqrt{9\,×\,2}\)

= 4 \(\sqrt{9}\) × \(\sqrt{2}\)

= 4 × 3 \(\sqrt{2}\)

= 12 \(\sqrt{2}\)

 

Here 12 \(\sqrt{2}\) and 7 \(\sqrt{2}\) are like surds.

∴ 4 \(\sqrt{18}\) and 7 \(\sqrt{2}\) are like surds.

 

(iv) 19 \(\sqrt{12}\) , 6 \(\sqrt{3}\) 

Solution:

19 \(\sqrt{12}\)

= 19 \(\sqrt{4\,×\,3}\)

= 19 \(\sqrt{4}\) × \(\sqrt{3}\)

= 19 × 2 \(\sqrt{3}\)

= 38 \(\sqrt{3}\)

 

Here 38 \(\sqrt{3}\) and 6 \(\sqrt{3}\) are like surds.

∴ 19 \(\sqrt{12}\) and 6 \(\sqrt{3}\) are like surds.

 

(v) 5 \(\sqrt{22}\) , 7 \(\sqrt{33}\) 

Solution:

Both surds 5 \(\sqrt{22}\) and 7 \(\sqrt{33}\) are in the simplest form

∴ 5 \(\sqrt{22}\) and 7 \(\sqrt{33}\) are not like surds.

 

(vi) 5 \(\sqrt{5}\) , \(\sqrt{75}\)

Solution:

\(\sqrt{75}\)

= \(\sqrt{25\,×\,3}\)

= \(\sqrt{25}\) × \(\sqrt{3}\)

= 5 \(\sqrt{3}\)

 

Here 5 \(\sqrt{5}\) and 5 \(\sqrt{3}\) are not like surds.

∴ 5 \(\sqrt{5}\) and \(\sqrt{75}\) are not like surds.

(4) Simplify the following surds. 

(i) \(\sqrt{27}\) 

Solution:

\(\sqrt{27}\) 

= \(\sqrt{9\,×\,3}\) 

= 3 \(\sqrt{3}\) 

 

(ii) \(\sqrt{50}\) 

Solution:

\(\sqrt{50}\) 

= \(\sqrt{25\,×\,2}\) 

= 5 \(\sqrt{2}\) 

 

(iii) \(\sqrt{250}\) 

Solution:

\(\sqrt{250}\) 

= \(\sqrt{25\,×\,10}\) 

= 5 \(\sqrt{10}\) 

 

(iv) \(\sqrt{112}\) 

Solution:

\(\sqrt{112}\) 

= \(\sqrt{16\,×\,7}\) 

= 4 \(\sqrt{7}\) 

 

(v) \(\sqrt{168}\)

Solution:

\(\sqrt{168}\)

= \(\sqrt{2\,×\,2\,×\,2\,×\,3\,×\,7}\)

= 2 \(\sqrt{2\,×\,3\,×\,7}\)

= 2 \(\sqrt{42}\)

(5) Compare the following pair of surds. 

(i) 7 \(\sqrt{2}\) , 5 \(\sqrt{3}\) 

Solution:

7 \(\sqrt{2}\) 

= \(\sqrt{49}\) × \(\sqrt{2}\)

= \(\sqrt{98}\)

 

5 \(\sqrt{3}\) 

= \(\sqrt{25}\) × \(\sqrt{3}\)

= \(\sqrt{75}\)

 

\(\sqrt{98}\) > \(\sqrt{75}\)

∴ 7 \(\sqrt{2}\) > 5 \(\sqrt{3}\) 

 

(ii) \(\sqrt{247}\) , \(\sqrt{274}\) 

Solution:

\(\sqrt{247}\) < \(\sqrt{274}\) 

 

(iii) 2 \(\sqrt{7}\) , \(\sqrt{28}\) 

Solution:

2 \(\sqrt{7}\) 

= \(\sqrt{4}\) × \(\sqrt{7}\)

= \(\sqrt{28}\)

 

\(\sqrt{28}\) = \(\sqrt{28}\)

∴ 2 \(\sqrt{7}\) = \(\sqrt{28}\) 

 

(iv) 5 \(\sqrt{5}\) , 7 \(\sqrt{2}\) 

Solution:

5 \(\sqrt{5}\) 

= \(\sqrt{25}\) × \(\sqrt{5}\)

= \(\sqrt{125}\)

 

7 \(\sqrt{2}\) 

= \(\sqrt{49}\) × \(\sqrt{2}\)

= \(\sqrt{98}\)

 

\(\sqrt{125}\) > \(\sqrt{98}\)

∴ 5 \(\sqrt{5}\) × 7 \(\sqrt{2}\)

 

(v) 4 \(\sqrt{42}\) , 9 \(\sqrt{2}\) 

Solution:

4 \(\sqrt{42}\)

= \(\sqrt{4}\) × \(\sqrt{42}\)

= \(\sqrt{672}\)

 

9 \(\sqrt{2}\) 

= \(\sqrt{81}\) × \(\sqrt{2}\)

= \(\sqrt{162}\)

 

\(\sqrt{672}\) > \(\sqrt{162}\)

∴ 4 \(\sqrt{42}\) > 9 \(\sqrt{2}\) 

 

(vi) 5 \(\sqrt{3}\) , 9 

Solution:

5 \(\sqrt{3}\)

= \(\sqrt{25}\) × \(\sqrt{3}\)

= \(\sqrt{75}\)

 

9 = \(\sqrt{81}\)

 

\(\sqrt{75}\) < \(\sqrt{81}\)

∴ 5 \(\sqrt{3}\) < 9 

 

(vii) 7 , 2 \(\sqrt{5}\)

Solution:

7 = \(\sqrt{49}\)

 

2 \(\sqrt{5}\)

= \(\sqrt{4}\) × \(\sqrt{5}\)

= \(\sqrt{20}\)

 

\(\sqrt{49}\) > \(\sqrt{20}\)

∴ 7 > 2 \(\sqrt{5}\)

(6) Simplify. 

(i) 5 \(\sqrt{3}\) + 8 \(\sqrt{3}\) 

Solution:

5 \(\sqrt{3}\) + 8 \(\sqrt{3}\) 

= (5 + 8) \(\sqrt{3}\) 

= 13 \(\sqrt{3}\)  

 

(ii) 9 \(\sqrt{5}\) – 4 \(\sqrt{5}\) + \(\sqrt{5}\)

Solution:

9 \(\sqrt{5}\) – 4 \(\sqrt{5}\) + \(\sqrt{5}\)

= (9 – 4 + 1) \(\sqrt{5}\)

= 6 \(\sqrt{5}\)

 

(iii) 7 \(\sqrt{48}\) – \(\sqrt{27}\) – \(\sqrt{3}\) 

Solution:

7 \(\sqrt{48}\)

= 7 \(\sqrt{16\,×\,3}\)

= (7 × 4) \(\sqrt{3}\) 

= 28 \(\sqrt{3}\) 

 

\(\sqrt{27}\)

= \(\sqrt{9\,×\,3}\)

= 3 \(\sqrt{3}\) 

 

∴ 7 \(\sqrt{48}\) – \(\sqrt{27}\) – \(\sqrt{3}\) 

= 28 \(\sqrt{3}\) – 3 \(\sqrt{3}\) – \(\sqrt{3}\) 

= (28 – 3 – 1) \(\sqrt{3}\) 

= 24 \(\sqrt{3}\) 

 

(iv) \(\sqrt{7}\) – \(\large \frac {3}{5}\) \(\sqrt{7}\) + 2 \(\sqrt{7}\)

 Solution:

\(\sqrt{7}\) – \(\large \frac {3}{5}\) \(\sqrt{7}\) + 2 \(\sqrt{7}\)

= (1 – \(\large \frac {3}{5}\) + 2) \(\sqrt{7}\) 

= \(\large(\) 3 – \(\large \frac {3}{5})\) \(\sqrt{7}\) 

= \(\large (\frac {3\,×\,5}{1\,×\,5}\) – \(\large \frac {3}{5})\) \(\sqrt{7}\) 

= \(\large (\frac {15}{5}\) – \(\large \frac {3}{5})\) \(\sqrt{7}\) 

= \(\large (\frac {15\,–\,3}{5})\) \(\sqrt{7}\) 

= \(\large (\frac {12}{5})\) \(\sqrt{7}\) 

(7) Multiply and write the answer in the simplest form.

(i) 3 \(\sqrt{12}\) × \(\sqrt{18}\) 

Solution:

3 \(\sqrt{12}\)

= 3 \(\sqrt{4\,×\,3}\)

= (3 × 4) \(\sqrt{3}\)

= 12 \(\sqrt{3}\)

 

\(\sqrt{18}\)

= \(\sqrt{9\,×\,2}\)

= \(\sqrt{9}\) × \(\sqrt{2}\)

= 3 \(\sqrt{2}\)

 

3 \(\sqrt{12}\) × \(\sqrt{18}\) 

= 12 \(\sqrt{3}\) × 3 \(\sqrt{2}\)

= (12 × 3) \(\sqrt{3}\)

= 36 \(\sqrt{3}\)

 

(ii) 3 \(\sqrt{12}\) × 7 \(\sqrt{15}\)

Solution:

3 \(\sqrt{12}\)

= 4 \(\sqrt{4\,×\,3}\)

= 3 \(\sqrt{4}\) × \(\sqrt{3}\)

= (3 × 2) \(\sqrt{2}\)

= 6 \(\sqrt{2}\)

 

3 \(\sqrt{12}\) × 7 \(\sqrt{15}\)

= (3 × 7) (\(\sqrt{12}\) × \(\sqrt{15}\))

= 21 \(\sqrt{12\,×\,15}\)

= 21 \(\sqrt{180}\)

= 21 \(\sqrt{36\,×\,5}\)

= 21 × 6 \(\sqrt{5}\)

= 126 \(\sqrt{5}\)

 

(iii) 3 \(\sqrt{8}\) × \(\sqrt{5}\) 

Solution:

3 \(\sqrt{8}\) × \(\sqrt{5}\) 

= 3 \(\sqrt{8\,×\,5}\) 

= 3 \(\sqrt{4\,×\,2\,×\,5}\)

= 3 × 2 \(\sqrt{2\,×\,5}\) 

= 6 \(\sqrt{10}\) 

 

(iv) 5\(\sqrt{8}\) × 2 \(\sqrt{8}\)

Solution:

5\(\sqrt{8}\) × 2 \(\sqrt{8}\)

= (5 × 2) \(\sqrt{8}\)

= 10 \(\sqrt{4\,×\,2}\) 

= 10 × 2 \(\sqrt{2}\) 

= 20 \(\sqrt{2}\) 

(8) Divide, and write the answer in simplest form.

(i) \(\sqrt{98}\) ÷ \(\sqrt{2}\) 

Solution:

\(\sqrt{98}\) ÷ \(\sqrt{2}\) 

= \(\large \frac {\sqrt{98}}{\sqrt{2}}\)

= \(\large \sqrt \frac {49\,×\,2}{2}\)

= \(\sqrt{49}\)

= 7

 

(ii) \(\sqrt{125}\) ÷ \(\sqrt{50}\)

Solution:

\(\sqrt{125}\) ÷ \(\sqrt{50}\)

= \(\large \frac {\sqrt{125}}{\sqrt{50}}\)

= \(\large \sqrt \frac {25\,×\,5}{25\,×\,2}\)

= \(\large \sqrt \frac {5}{2}\)

 

(iii) \(\sqrt{54}\) ÷ \(\sqrt{27}\) 

Solution:

\(\sqrt{54}\) ÷ \(\sqrt{27}\) 

= \(\large \frac {\sqrt{54}}{\sqrt{27}}\)

= \(\large \sqrt \frac {9\,×\,6}{9\,×\,3}\)

= \(\sqrt {2}\)

 

(iv) \(\sqrt{310}\) ÷ \(\sqrt{5}\)

Solution:

\(\sqrt{310}\) ÷ \(\sqrt{5}\)

= \(\large \frac {\sqrt{310}}{\sqrt{5}}\)

= \(\large \sqrt \frac {62\,×\,5}{5}\)

= \(\large \sqrt {62}\)

(9) Rationalize the denominator. 

(i) \(\large \frac {3}{\sqrt{5}}\)

Solution:

Rationalizing factor of \(\sqrt{5}\) is \(\sqrt{5}\)

 

∴ \(\large \frac {3}{\sqrt{5}}\)

= \(\large \frac {3}{\sqrt{5}}\) × \(\large \frac {\sqrt{5}}{\sqrt{5}}\)

= \(\large \frac {3\,×\,\sqrt{5}}{\sqrt{5}\,×\,\sqrt{5}}\)

= \(\large \frac {3\sqrt{5}}{5}\)

 

(ii) \(\large \frac {1}{\sqrt{14}}\)

Solution:

Rationalizing factor of \(\sqrt{14}\) is \(\sqrt{14}\)

 

∴ \(\large \frac {1}{\sqrt{14}}\)

= \(\large \frac {1}{\sqrt{14}}\) × \(\large \frac {\sqrt{14}}{\sqrt{14}}\)

= \(\large \frac {1\,×\,\sqrt{14}}{\sqrt{14}\,×\,\sqrt{14}}\)

= \(\large \frac {\sqrt{14}}{14}\)

 

(iii) \(\large \frac {5}{\sqrt{7}}\)

Solution:

Rationalizing factor of \(\sqrt{7}\) is \(\sqrt{7}\)

 

∴ \(\large \frac {5}{\sqrt{7}}\)

= \(\large \frac {5}{\sqrt{7}}\) × \(\large \frac {\sqrt{7}}{\sqrt{7}}\)

= \(\large \frac {5\,×\,\sqrt{7}}{\sqrt{7}\,×\,\sqrt{7}}\)

= \(\large \frac {5\sqrt{7}}{7}\)

 

(iv) \(\large \frac {6}{9\sqrt{3}}\)

Solution:

Rationalizing factor of 9\(\sqrt{3}\) is \(\sqrt{3}\)

 

∴ \(\large \frac {6}{9\sqrt{3}}\)

= \(\large \frac {6}{9\sqrt{3}}\) × \(\large \frac {\sqrt{3}}{\sqrt{3}}\)

= \(\large \frac {6\,×\,\sqrt{3}}{9\sqrt{3}\,×\,\sqrt{3}}\)

= \(\large \frac {2\sqrt{7}}{3\,×\,3}\)

= \(\large \frac {2\sqrt{7}}{9}\)

 

(v) \(\large \frac {11}{\sqrt{3}}\)

Solution:

Rationalizing factor of \(\sqrt{3}\) is \(\sqrt{3}\)

 

∴ \(\large \frac {11}{\sqrt{3}}\)

= \(\large \frac {11}{\sqrt{3}}\) × \(\large \frac {\sqrt{3}}{\sqrt{3}}\)

= \(\large \frac {11\,×\,\sqrt{3}}{\sqrt{3}\,×\,\sqrt{3}}\)

= \(\large \frac {11\sqrt{3}}{3}\)

Practice set 2.4

(1) Multiply.

(i) \(\sqrt{3}\) (\(\sqrt{7}\) – \(\sqrt{3}\)) 

Solution:

\(\sqrt{3}\) ( \(\sqrt{7}\) – \(\sqrt{3}\) ) 

= \(\sqrt{3}\) × \(\sqrt{7}\) – \(\sqrt{3}\) × \(\sqrt{3}\)  

= \(\sqrt{3\,×\,7}\) – 3

= \(\sqrt{21}\) – 3

= – 3 + \(\sqrt{21}\)

 

(ii) (\(\sqrt{5}\) – \(\sqrt{7}\)) \(\sqrt{2}\) 

Solution:

(\(\sqrt{5}\) – \(\sqrt{7}\)) \(\sqrt{2}\) 

= \(\sqrt{5}\) × \(\sqrt{2}\) – \(\sqrt{7}\) × \(\sqrt{2}\)  

= \(\sqrt{5\,×\,2}\) – \(\sqrt{7\,×\,2}\)

= \(\sqrt{10}\) – \(\sqrt{14}\)

 

(iii) (3 \(\sqrt{2}\) – \(\sqrt{3}\) )(4 \(\sqrt{3}\) – \(\sqrt{2}\) ) 

Solution:

(3 \(\sqrt{2}\) – \(\sqrt{3}\) )(4 \(\sqrt{3}\) – \(\sqrt{2}\) ) 

= 3\(\sqrt{2}\) × 4\(\sqrt{3}\) – 3\(\sqrt{2}\) × \(\sqrt{2}\) – \(\sqrt{3}\) × 4\(\sqrt{3}\) + \(\sqrt{3}\) × \(\sqrt{2}\)  

= 12\(\sqrt{6}\) – (3 × 2) – (3 × 4) + \(\sqrt{6}\)  

= 12\(\sqrt{6}\) – 6 – 12 + \(\sqrt{6}\)  

= 12\(\sqrt{6}\) + \(\sqrt{6}\) – 18 

= 13 \(\sqrt{6}\) – 18 

= – 18 + 13 \(\sqrt{6}\) 

(2) Rationalize the denominator. 

(i) \(\large \frac {1}{\sqrt{7} \,+\, \sqrt{2}}\)

Solution:

Conjugate of \(\sqrt{7} \,+\, \sqrt{2}\) is \(\sqrt{7} \,–\, \sqrt{2}\)

 

\(\large \frac {1}{\sqrt{7} \,+\, \sqrt{2}}\)

= \(\large \frac {1}{\sqrt{7} \,+\, \sqrt{2}}\) × \(\large \frac {\sqrt{7} \,–\, \sqrt{2}}{\sqrt{7} \,–\, \sqrt{2}}\)

= \(\large \frac {1\,×\,(\sqrt{7} \,–\, \sqrt{2})}{(\sqrt{7} \,+\, \sqrt{2})(\sqrt{7} \,–\, \sqrt{2})}\)

= \(\large \frac {\sqrt{7}\,–\,\sqrt{2}}{(\sqrt{7})^2 \,–\, (\sqrt{2})^2}\)

= \(\large \frac {\sqrt{7}\,–\, \sqrt{2}}{7\,–\,2}\)

= \(\large \frac {\sqrt{7}\,–\, \sqrt{2}}{5}\)

 

(ii) \(\large \frac {3}{2 \sqrt{5} \,–\, 3 \sqrt{2}}\)

Solution:

Conjugate of \(2\sqrt{5} \,–\, 3\sqrt{3}\) is \(2\sqrt{5} \,+\, 3\sqrt{3}\)

 

\(\large \frac {3}{2 \sqrt{5} \,–\, 3 \sqrt{2}}\)

= \(\large \frac {3}{2 \sqrt{5} \,–\, 3 \sqrt{2}}\) × \(\large \frac {2\sqrt{5} \,+\, 3\sqrt{3}}{2\sqrt{5} \,+\, 3\sqrt{3}}\)

= \(\large \frac {3\,×\,(2\sqrt{5} \,+\, 3\sqrt{3})}{(2\sqrt{5} \,–\, 3\sqrt{3})(2\sqrt{5} \,+\, 3\sqrt{3})}\)

= \(\large \frac {6\sqrt{5} \,+\, 9\sqrt{3}}{(2\sqrt{5})^2 \,–\,(3\sqrt{3})^2}\)

= \(\large \frac {6\sqrt{5} \,+\, 9\sqrt{3}}{(4\,×\,5)\,–\,(9\,×\,3)}\)

= \(\large \frac {6\sqrt{5} \,+\, 9\sqrt{3}}{20\,–\,18}\)

= \(\large \frac {6\sqrt{5} \,+\, 9\sqrt{3}}{2}\)

 

(iii) \(\large \frac {4}{7 \,+\, 4 \sqrt{3}}\)

Solution:

Conjugate of \(7\,+\, 4\sqrt{3}\) is \(7 \,–\, 4\sqrt{3}\)

 

∴ \(\large \frac {4}{7 \,+\, 4 \sqrt{3}}\)

= \(\large \frac {4}{7 \,+\, 4 \sqrt{3}}\) × \(\large \frac {7 \,–\, 4\sqrt{3}}{7 \,–\, 4\sqrt{3}}\)

= \(\large \frac {4\,×\,(7 \,–\, 4\sqrt{3})}{(7 \,+\, 4\sqrt{3})(7 \,–\, 4\sqrt{3})}\)

= \(\large \frac {28\,–\,16\sqrt{3}}{{7}^2 \,–\,(4\sqrt{2})^2}\)

= \(\large \frac {28\,–\,16\sqrt{3}}{49\,–\,(16\,×\,2)}\)

= \(\large \frac {28\,–\,16\sqrt{3}}{49\,–\,48}\)

= \(\large \frac {28\,–\,16\sqrt{3}}{1}\)

= 28 –\(16\sqrt{3}\)

 

(iv) \(\large \frac {\sqrt{5} \,–\, \sqrt{3}}{\sqrt{5} \,+\, \sqrt{3}}\)

Solution:

Conjugate of \(\sqrt{5} \,+\, \sqrt{3}\) is \(\sqrt{5} \,–\, \sqrt{3}\)

 

\(\large \frac {\sqrt{5} \,–\, \sqrt{3}}{\sqrt{5} \,+\, \sqrt{3}}\)

= \(\large \frac {\sqrt{5} \,–\, \sqrt{3}}{\sqrt{5} \,+\, \sqrt{3}}\) × \(\large \frac {\sqrt{5} \,–\, \sqrt{3}}{\sqrt{5} \,–\, \sqrt{3}}\)

= \(\large \frac {(\sqrt{5} \,–\, \sqrt{3})(\sqrt{5} \,–\, \sqrt{3})}{(\sqrt{5} \,+\, \sqrt{3})(\sqrt{5} \,–\, \sqrt{3})}\) 

= \(\large \frac {(\sqrt{5} \,–\, \sqrt{3})^2}{(\sqrt{5})^2 \,+\, (\sqrt{3})^2}\) 

= \(\large \frac {(\sqrt{5})^2\,–\, 2\,×\,\sqrt{5}\,×\,\sqrt{3}\,+\,(\sqrt{3})^2}{5\,–\,3}\) 

= \(\large \frac {5\,–\,2\sqrt{15}\,+\,3}{2}\) 

= \(\large \frac {8\,–\,2\sqrt{15}}{2}\) 

= \(\large \frac {2(4\,–\,\sqrt{15})}{2}\) 

= 4 – \(\sqrt{15}\)

Practice set 2.5

(1) Find the value.

(i) | 15 – 2 |

Solution:

| 15 – 2 |

= | 13 |

= 13

 

(ii) | 4 – 9 | 

Solution:

| 4 – 9 | 

=  | – 5 | 

= 5

 

(iii) | 7 | × | – 4 |

Solution:

| 7 | × | – 4 |

= | 7 × – 4 |

= | – 28 |

= 28

(2) Solve.

(i) | 3x – 5 | = 1 

Solution:

| 3x – 5 | = 1 

∴ 3x – 5 = 1 

∴ 3x = 1 + 5

∴ 3x = 6

∴ x = \(\large \frac {6}{3}\)

∴ x = 2

 

∴ 3x – 5 = – 1 

∴ 3x = – 1 + 5

∴ 3x = 4

∴ x = \(\large \frac {4}{3}\)

 

(ii) | 7 – 2x | = 5 

Solution:

| 7 – 2x | = 5

∴ 7 – 2x = 5

∴ – 2x = 5 – 7

∴ – 2x = – 2

∴ x = \(\large \frac {–\,2}{–\,2}\)

∴ x = 1

 

∴ 7 – 2x = – 5

∴ – 2x = – 5 – 7

∴ – 2x = – 12

∴ x = \(\large \frac {– \,12}{–\, 2}\)

∴ x = 6

 

(iii) | \(\large \frac {8\,–\,x}{2}\) | = 5

Solution:

| \(\large \frac {8\,–\,x}{2}\) | = 5

∴ \(\large \frac {8\,–\,x}{2}\) = 5

∴ 8 – x = 5 × 2

∴ 8 – x = 10

∴ – x = 10 – 8

∴ – x = 2

∴ x = – 2

 

∴ \(\large \frac {8\,–\,x}{2}\) = – 5

∴ 8 – x = – 5 × 2

∴ 8 – x = – 10

∴ – x = – 10 – 8

∴ – x = – 18

∴ x = 18

 

(iv) | 5 + \(\large \frac {x}{4}\) | = 5

Solution:

| 5 + \(\large \frac {x}{4}\) | = 5

∴ 5 + \(\large \frac {x}{4}\) = 5

∴ \(\large \frac {x}{4}\) = 5 – 5

∴ \(\large \frac {x}{4}\) = 0

∴ x = 0

 

∴ 5 + \(\large \frac {x}{4}\) = – 5

∴ \(\large \frac {x}{4}\) = – 5 – 5

∴ \(\large \frac {x}{4}\) = – 10

∴ x = – 10 × 4

∴ x = – 40

Problem Set 2

(1) Choose the correct alternative answer for the questions given below.

(i) Which one of the following is an irrational number? 

(A) \(\large \frac {16}{25}\)

(B) \(\sqrt{5}\)

(C) \(\large \frac {3}{9}\)

(D) \(\sqrt{196}\)

 

Ans: Option (B) : \(\sqrt{5}\)

 

(ii) Which of the following is an irrational number?

(A) 0.17 

(B) \(1.\overline{513}\)

(C) \(1.\overline{2746}\)

(D) 0.101001000…..

 

Ans: Option (D) : 0.101001000…..

 

(iii) Decimal expansion of which of the following is non-terminating recurring ? 

(A) \(\large \frac {2}{5}\)

(B) \(\large \frac {3}{16}\)

(C) \(\large \frac {3}{11}\)

(D) \(\large \frac {137}{25}\)

 

Ans: Option (C) : \(\large \frac {3}{11}\)

 

(iv) Every point on the number line represent, which of the following numbers? 

(A) Natural numbers 

(B) Irrational numbers 

(C) Rational numbers 

(D) Real numbers 

 

Ans: Option (D) : Real numbers 

 

(v) The number \(0.\dot4\) in \(\large \frac {p}{q}\) form is _____

(A) \(\large \frac {4}{9}\)

(B) \(\large \frac {40}{9}\)

(C) \(\large \frac {3.6}{9}\)

(D) \(\large \frac {36}{9}\)

 

Ans: Option (A) : \(\large \frac {4}{9}\)

 

(vi) What is \(\sqrt{n}\), if n is not a perfect square number? 

(A) Natural number 

(B) Rational number 

(C) Irrational number 

(D) Options A, B, C all are correct. 

 

Ans: Option (C) : Irrational number 

 

(vii) Which of the following is not a surd ? 

(A) \(\sqrt{7}\) 

(B) \(\sqrt[3]{17}\)

(C) \(\sqrt[3]{64}\)

(D) \(\sqrt{193}\)

 

Ans: Option (C) : \(\sqrt[3]{64}\)

 

(viii) What is the order of the surd \(\sqrt[3]{\sqrt{5}}\) ?

(A) 3 

(B) 2 

(C) 6

(D) 5

 

Ans: Option (C) : 6

 

(ix) Which one is the conjugate pair of 2 \(\sqrt{5}\) + \(\sqrt{3}\) ? 

(A) – 2 \(\sqrt{5}\) + \(\sqrt{3}\) 

(B) – 2 \(\sqrt{5}\) – \(\sqrt{3}\) 

(C) 2 \(\sqrt{3}\) – \(\sqrt{5}\) 

(D) \(\sqrt{3}\) + 2 \(\sqrt{5}\)

 

Ans: Option (C) : 2 \(\sqrt{3}\) – \(\sqrt{5}\) 

 

(x) The value of |12 – (13 + 7) × 4| is ______

(A) – 68 

(B) 68 

(C) – 32 

(D) 32 

 

Ans: Option (B) : 68

(2) Write the following numbers in \(\large \frac {p}{q}\) form.

(i) 0.555 

Solution:

0.555 

= \(\large \frac {555}{1000}\)

= \(\large \frac {5\,×\,111}{5\,×\,200}\)

= \(\large \frac {111}{200}\)

 

∴ 0.555 = \(\large \frac {111}{200}\) 

 

(ii) \(29.\overline{568}\) 

Solution:

Let x = 29.568568….. = \(29.\overline{568}\) …(i)

Multiplying both the sides by 1000, we get,

∴ 1000x = 29568.568…. = \(29568.\overline{568}\) …(ii)

 

Subtracting (i) from (ii), we get,

∴ 1000x – x = \(29568.\overline{568}\) – \(29.\overline{568}\)

∴ 999x = 29539

∴ x = \(\large \frac {29539}{999}\)

 

∴ 29.568 = \(\large \frac {29539}{999}\)

 

(iii) 9.315315 … 

Solution:

Let x = 9.315315…. = \(9.\overline{315}\)  …(i)

Multiplying both the sides by 1000, we get,

∴ 1000x = 9315.315315…. = \(9315.\overline{315}\) …(ii)

 

Subtracting (i) from (ii), we get,

∴ 1000x – x = \(9315.\overline{315}\) – \(9.\overline{315}\) 

∴ 999x = 9306

∴ x = \(\large \frac {9306}{999}\)

∴ x = \(\large \frac {1034}{111}\)

 

∴ 9.315315… = \(\large \frac {1034}{111}\)

 

(iv) 357.417417

Solution:

Let x = 357.417417…. = \(357.\overline{417}\) (i)

Multiplying both the sides by 1000, we get,

∴ 1000x = 357417.417417…. = \(357417.\overline{417}\) …(ii)

 

Subtracting (i) from (ii)

∴ 1000x – x = \(357417.\overline{417}\) – \(357.\overline{417}\)

∴ 999x = 357060

∴ x = \(\large \frac {357060}{999}\)

 

∴ 357.417417 = \(\large \frac {357060}{999}\)

 

(v) 30.219

Solution:

Let x = 30.219219….. = \(30.\overline{219}\) …(i)

Multiplying both the sides by 1000, we get,

∴ 1000x = 30219.219219…. = \(30219.\overline{219}\) …(ii)

 

Subtracting (i) from (ii)

∴ 1000x – x = \(30219.\overline{219}\) – \(30.\overline{219}\)

∴ 999x = 30189

∴ x = \(\large \frac {30189}{999}\)

∴ x = \(\large \frac {10063}{333}\)

 

∴ 30.219 = \(\large \frac {10063}{333}\)

(3) Write the following numbers in its decimal form.

(i) \(\large \frac {–\,5}{7}\)

Solution:

IMG 20231015 225343 Chapter 2 – Real Numbers

∴ \(\large \frac {5}{7}\) = \(0.\overline{714285}\)

∴ \(\large \frac {–\,5}{7}\) = \(–\,0.\overline{714285}\)

 

(ii) \(\large \frac {9}{11}\)

Solution:

IMG 20231015 225405 Chapter 2 – Real Numbers

∴ \(\large \frac {9}{11}\) = \(0.\overline{81}\)

 

(iii) \(\sqrt{5}\) 

Solution:

IMG 20231015 225416 Chapter 2 – Real Numbers

∴ \(\sqrt{5}\) = 2.2360…

 

(iv) \(\large \frac {121}{13}\)

Solution:

IMG 20231015 225429 Chapter 2 – Real Numbers

∴ \(\large \frac {121}{13}\) = \(9.\overline{307692}\)

 

(v) \(\large \frac {29}{8}\)

Solution:

IMG 20231015 225440 Chapter 2 – Real Numbers

∴ \(\large \frac {29}{8}\) = 3.625

(4) Show that 5 + \(\sqrt{7}\) is an irrational number. 

Solution:

Let 5 + \(\sqrt{7}\) = x, where ‘a’ is any rational number.

∴ \(\sqrt{7}\) = x – 5 … (i)

 

Now,

x is a rational number then x – 5 is also a rational number.

 

Then, \(\sqrt{7}\) is a rational number …[from (i)]

 

But, it contradicts the fact that \(\sqrt{7}\) is an irrational number.

∴ \(\sqrt{7}\) ≠ x – 5

 

Our assumption is wrong.

 

Hence, 5 + \(\sqrt{7}\) is an irrational number.

(5) Write the following surds in simplest form. 

(i) \(\large \frac {3}{4}\) \(\sqrt{8}\) 

Solution:

\(\large \frac {3}{4}\) \(\sqrt{8}\) 

= \(\large \frac {3}{4}\) \(\sqrt{4\,×\,2}\) 

= \(\large \frac {3}{4}\) × 2 \(\sqrt{2}\) 

= \(\large \frac {3}{2}\) \(\sqrt{2}\) 

 

(ii) – \(\large \frac {5}{9}\) \(\sqrt{45}\) 

Solution:

– \(\large \frac {5}{9}\) \(\sqrt{45}\) 

= – \(\large \frac {5}{9}\) \(\sqrt{9\,×\,5}\) 

= – \(\large \frac {5}{9}\) × 3\(\sqrt{5}\) 

(6) Write the simplest form of rationalising factor for the given surds. 

(i) \(\sqrt{32}\) 

Solution:

\(\sqrt{32}\)

= \(\sqrt{16\,×\,2}\)

= 4 \(\sqrt{2}\)

 

∴ Simplest rationalization factor is \(\sqrt{2}\)

 

(ii) \(\sqrt{50}\) 

Solution:

\(\sqrt{50}\)

= \(\sqrt{25\,×\,2}\)

= 5 \(\sqrt{2}\)

 

∴ Simplest rationalization factor is \(\sqrt{2}\)

 

(iii) \(\sqrt{27}\) 

Solution:

\(\sqrt{27}\) 

= \(\sqrt{9\,×\,3}\) 

= 3 \(\sqrt{3}\) 

 

∴ Simplest rationalization factor is \(\sqrt{3}\)

 

(iv) \(\large \frac {3}{5}\)\(\sqrt{10}\)

Solution:

Simplest rationalization factor is \(\sqrt{10}\)

 

(v) 3 \(\sqrt{72}\) 

Solution:

3 \(\sqrt{72}\) 

= 3 \(\sqrt{36\,×\,2}\) 

= 3 × 6 \(\sqrt{2}\)

= 18 \(\sqrt{2}\)

 

∴ Simplest rationalization factor is \(\sqrt{2}\)

 

(vi) 4 \(\sqrt{11}\)

Solution:

Simplest rationalization factor is \(\sqrt{11}\)

(7) Simplify. 

(i) \(\large \frac {4}{7}\) \(\sqrt{147}\) + \(\large \frac {3}{8}\) \(\sqrt{192}\) – \(\large \frac {1}{5}\) \(\sqrt{75}\)

Solution:

\(\large \frac {4}{7}\) \(\sqrt{147}\) + \(\large \frac {3}{8}\) \(\sqrt{192}\) – \(\large \frac {1}{5}\) \(\sqrt{75}\)

= \(\large \frac {4}{7}\) \(\sqrt{49\,×\,3}\) + \(\large \frac {3}{8}\) \(\sqrt{64\,×\,3}\) – \(\large \frac {1}{5}\) \(\sqrt{25\,×\,3}\)

= \(\large \frac {4}{7}\) × 7 \(\sqrt{3}\) + \(\large \frac {3}{8}\) × 8\(\sqrt{3}\) – \(\large \frac {1}{5}\) × 5\(\sqrt{3}\)

= 4 \(\sqrt{3}\) + 3 \(\sqrt{3}\) – \(\sqrt{3}\)

= (4 + 3 – 1) \(\sqrt{3}\)

= 6 \(\sqrt{3}\)

 

(ii) 5 \(\sqrt{3}\) + 2 \(\sqrt{27}\) + \(\large \frac {1}{\sqrt3}\) 

Solution:

5 \(\sqrt{3}\) + 2 \(\sqrt{27}\) + \(\large \frac {1}{\sqrt3}\) 

= 5 \(\sqrt{3}\) + 2 \(\sqrt{9\,×\,3}\) + \(\large \frac {1}{\sqrt3}\) × \(\large \frac {\sqrt3}{\sqrt3}\) 

= 5 \(\sqrt{3}\) + 2 × 3\(\sqrt{3}\) + \(\large \frac {\sqrt3}{(\sqrt3)(\sqrt3)}\) 

= 5 \(\sqrt{3}\) + 6 \(\sqrt{3}\) + \(\large \frac {\sqrt3}{3}\) 

= (5 + 6 + \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= (11 + \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= (\(\large \frac {11\,×\,3}{3}\) + \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= (\(\large \frac {33}{3}\) + \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= \(\large \frac {33\,+\,1}{3}\) \(\sqrt{3}\)

= \(\large \frac {34}{3}\) \(\sqrt{3}\)

 

(iii) \(\sqrt{216}\) – 5 \(\sqrt{6}\) + \(\sqrt{294}\) – \(\large \frac {3}{\sqrt6}\) 

Solution:

\(\sqrt{216}\) – 5 \(\sqrt{6}\) + \(\sqrt{294}\) – \(\large \frac {3}{\sqrt6}\) 

= \(\sqrt{36\,×\,6}\) – 5 \(\sqrt{6}\) + \(\sqrt{49\,×\,6}\) – \(\large \frac{3}{\sqrt6}\) × \(\large \frac {\sqrt6}{\sqrt6}\) 

= 6 \(\sqrt{6}\) – 5 \(\sqrt{6}\) + 7 \(\sqrt{6}\) – \(\large \frac{3\,×\,\sqrt6}{(\sqrt6)(\sqrt6)}\) 

= 6 \(\sqrt{6}\) – 5 \(\sqrt{6}\) + 7 \(\sqrt{6}\) – \(\large \frac{\sqrt6}{2}\) 

= (6 – 5 + 7 – \(\large \frac {1}{2}\)) \(\sqrt{6}\)

= 8 – \(\large \frac {1}{2}\) \(\sqrt{6}\)

= \(\large \frac {8\,×\,2}{2}\) – \(\large \frac {1}{2}\) \(\sqrt{6}\)

= \(\large \frac {16}{2}\) – \(\large \frac {1}{2}\) \(\sqrt{6}\)

= \(\large \frac {16\,–\,1}{2}\) \(\sqrt{6}\)

= \(\large \frac {15}{2}\) \(\sqrt{6}\)

 

(iv) 4\(\sqrt{12}\) – \(\sqrt{75}\) – 7 \(\sqrt{48}\) 

Solution:

4\(\sqrt{12}\) – \(\sqrt{75}\) – 7 \(\sqrt{48}\) 

= 4\(\sqrt{4\,×\,3}\) – \(\sqrt{25\,×\,3}\) – 7 \(\sqrt{16\,×\,3}\) 

= 4 × 2 \(\sqrt{3}\) – 5 \(\sqrt{3}\) – 7 × 4 \(\sqrt{3}\) 

= 8 \(\sqrt{3}\) – 5 \(\sqrt{3}\) – 28 \(\sqrt{3}\) 

= (8 – 5 – 28) \(\sqrt{3}\)

= – 25 \(\sqrt{3}\)

 

(v*) 2 \(\sqrt{48}\) – \(\sqrt{75}\) – \(\large \frac {1}{\sqrt3}\) 

Solution:

2 \(\sqrt{48}\) – \(\sqrt{75}\) – \(\large \frac {1}{\sqrt3}\) 

= 2 \(\sqrt{16\,×\,3}\) – \(\sqrt{25\,×\,3}\) – \(\large \frac {1}{\sqrt3}\) × \(\large \frac {\sqrt3}{\sqrt3}\)

= 2 × 4 \(\sqrt{3}\) – 5 \(\sqrt{3}\) – \(\large \frac {\sqrt3}{(\sqrt3)(\sqrt3)}\) 

= 8 \(\sqrt{3}\) – 5 \(\sqrt{3}\) – \(\large \frac {\sqrt3}{3}\) 

= (8 – 5 – \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= (3 – \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= (\(\large \frac {3\,×\,3}{3}\) – \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= (\(\large \frac {9}{3}\) – \(\large \frac {1}{3}\)) \(\sqrt{3}\)

= \(\large \frac {9\,–\,1}{3}\) \(\sqrt{3}\)

= \(\large \frac {8}{3}\) \(\sqrt{3}\)

(8) Rationalize the denominator. 

(i) \(\large \frac {1}{\sqrt5}\) 

Solution:

Rationalizing factor of \(\sqrt{5}\) is \(\sqrt{5}\)

 

∴ \(\large \frac {1}{\sqrt5}\) 

= \(\large \frac {1}{\sqrt5}\) × \(\large \frac {\sqrt5}{\sqrt5}\) 

= \(\large \frac {\sqrt5}{(\sqrt5)(\sqrt5)}\) 

= \(\large \frac {\sqrt5}{5}\) 

 

(ii) \(\large \frac {2}{3\sqrt7}\) 

Solution:

Rationalizing factor of 3 \(\sqrt{7}\) is \(\sqrt{7}\)

 

∴ \(\large \frac {2}{3\sqrt7}\)  

= \(\large \frac {2}{3\sqrt7}\) × \(\large \frac {\sqrt7}{\sqrt7}\) 

= \(\large \frac {2\sqrt7}{(3\sqrt7)(\sqrt7)}\) 

= \(\large \frac {2\sqrt7}{3\,×\,7}\) 

= \(\large \frac {2\sqrt7}{21}\) 

 

(iii) \(\large \frac {1}{\sqrt3\,–\,\sqrt2}\) 

Solution:

Conjugate of \(\sqrt{3} \,–\, \sqrt{2}\) is \(\sqrt{3} \,+\, \sqrt{2}\)

 

\(\large \frac {1}{\sqrt3\,–\,\sqrt2}\)

= \(\large \frac {1}{\sqrt3\,–\,\sqrt2}\) × \(\large \frac {\sqrt{3} \,+\, \sqrt{2}}{\sqrt{3} \,+\, \sqrt{2}}\)

= \(\large \frac {1\,×\,(\sqrt{3} \,+\, \sqrt{2})}{(\sqrt{3} \,–\, \sqrt{2})(\sqrt{3} \,+\, \sqrt{2})}\)

= \(\large \frac {\sqrt{3}\,+\, \sqrt{2}}{(\sqrt{3})^2 \,–\,(\sqrt{2})^2}\)

= \(\large \frac {\sqrt{3}\,+\, \sqrt{2}}{3\,–\,2}\)

= \(\large \frac {\sqrt{3}\,+\, \sqrt{2}}{1}\)

= \(\sqrt{3}\) + \(\sqrt{2}\)

 

(iv) \(\large \frac {1}{3\sqrt5\,+\,2\sqrt2}\) 

Solution:

Conjugate of \(3\sqrt{5} \,+\, 2\sqrt{2}\) is \(3\sqrt{5} \,–\, 2\sqrt{2}\)

 

\(\large \frac {1}{3\sqrt5\,+\,2\sqrt2}\) 

= \(\large \frac {1}{3\sqrt5\,+\,2\sqrt2}\) × \(\large \frac {3\sqrt{5} \,–\, 2\sqrt{2}}{3\sqrt{5} \,–\, 2\sqrt{2}}\)

= \(\large \frac {1\,×\,(3\sqrt{5} \,–\, 2\sqrt{2})}{(3\sqrt{5} \,+\, 2\sqrt{2})(3\sqrt{5} \,–\, 2\sqrt{2})}\)

= \(\large \frac {3\sqrt{5} \,–\, \sqrt{2}}{(3\sqrt{5})^2 \,–\,(2\sqrt{2})^2}\)

= \(\large \frac {3\sqrt{5} \,–\, 2\sqrt{2}}{(9 × 5)\,–\, (4 × 2)}\)

= \(\large \frac {3\sqrt{5} \,–\, 2\sqrt{2}}{45\,–\,8}\)

= \(\large \frac {3\sqrt{5} \,–\, 2\sqrt{2}}{37}\)

 

(v) \(\large \frac {12}{4\sqrt3\,–\,\sqrt2}\) 

Solution:

Conjugate of \(4\sqrt3\,–\,\sqrt2\) is \(4\sqrt3\,+\,\sqrt2\)

 

\(\large \frac {12}{4\sqrt3\,–\,\sqrt2}\) 

= \(\large \frac {12}{4\sqrt3\,–\,\sqrt2}\)  × \(\large \frac {4\sqrt3\,+\,\sqrt2}{4\sqrt3\,+\,\sqrt2}\)

= \(\large \frac {12\,×\,(4\sqrt3\,+\,\sqrt2)}{(4\sqrt3\,–\,\sqrt2)(4\sqrt3\,+\,\sqrt2)}\)

= \(\large \frac {12\,×\,4\sqrt3\,+\,12\,\sqrt2}{(4\sqrt3)^2 \,–\,(\sqrt{2})^2}\)

= \(\large \frac {48\sqrt3\,+\,12\,\sqrt2}{(16\,×\,3)\,–\,2}\)

= \(\large \frac {48\sqrt3\,+\,12\,\sqrt2}{48\,–\,2}\)

= \(\large \frac {48\sqrt3\,+\,12\,\sqrt2}{46}\)

= \(\large \frac {6\,×\,2(4\sqrt3\,+\,\sqrt2)}{2\,×\,23}\)

= \(\large \frac {6(4\sqrt3\,+\,\sqrt2)}{23}\)