Maharashtra Board Textbook Solutions for Standard Five

Chapter 5 – Fractions

Practice set 17

1. Write the proper number in the box.

(1) \(\large \frac {1}{2}\) = \(\large \frac {□}{20}\)

Ans: 

 \(\large \frac {1}{2}\) = \(\large \frac {□}{20}\)

∴ \(\large \frac {1}{2}\) = \(\large \frac {1 \,×\, 10}{2\,×\, 10}\) = \(\large \frac {10}{20}\)

 

(2) \(\large \frac {3}{4}\) = \(\large \frac {15}{□}\)

Ans: 

\(\large \frac {3}{4}\) = \(\large \frac {15}{□}\)

∴ \(\large \frac {3}{4}\) = \(\large \frac {3\,×\,5}{4\,×\,5}\) = \(\large \frac {15}{20}\)

 

(3) \(\large \frac {9}{11}\) = \(\large \frac {18}{□}\)

Ans: 

\(\large \frac {9}{11}\) = \(\large \frac {18}{□}\)

∴ \(\large \frac {9}{11}\) = \(\large \frac {9\,×\,2}{11\,×\,2}\) = \(\large \frac {18}{22}\)

 

(4) \(\large \frac {10}{40}\) = \(\large \frac {□}{8}\)

Ans: 

\(\large \frac {10}{40}\) = \(\large \frac {□}{8}\)

∴ \(\large \frac {10}{40}\) = \(\large \frac {10\,÷\,5}{40\,÷\,5}\) = \(\large \frac {2}{8}\)

 

(5) \(\large \frac {14}{26}\) = \(\large \frac {□}{13}\)

Ans: 

\(\large \frac {14}{26}\) = \(\large \frac {□}{13}\)

∴ \(\large \frac {14}{26}\) = \(\large \frac {14\,÷\,2}{26\,÷\,2}\) = \(\large \frac {7}{13}\)

 

(6) \(\large \frac {□}{3}\) = \(\large \frac {4}{6}\)

Ans: 

\(\large \frac {□}{3}\) = \(\large \frac {4}{6}\)

∴ \(\large \frac {□}{3}\) = \(\large \frac {4\,÷\,2}{6\,÷\,2}\) = \(\large \frac {4}{6}\)

 

(7) \(\large \frac {1}{□}\) = \(\large \frac {4}{20}\)

Ans: 

\(\large \frac {1}{□}\) = \(\large \frac {4}{20}\)

∴ \(\large \frac {1}{□}\) = \(\large \frac {4\,÷\,4}{20\,÷\,4}\) = \(\large \frac {4}{20}\)

 

(8) \(\large \frac {□}{5}\) = \(\large \frac {10}{25}\)

Ans: 

\(\large \frac {□}{5}\) = \(\large \frac {10}{25}\)

∴ \(\large \frac {□}{5}\) = \(\large \frac {10\,÷\,5}{5\,÷\,5}\) = \(\large \frac {10}{25}\)

2. Find an equivalent fraction with denominator 18, for each of the following fractions.

\(\large \frac {1}{2}\)

Ans: 

\(\large \frac {1}{2}\) = \(\large \frac {1\,×\,9}{2\,×\,9}\) = \(\large \frac {9}{18}\)

 

\(\large \frac {2}{3}\)

Ans: 

\(\large \frac {2}{3}\) = \(\large \frac {2\,×\,6}{3\,×\,6}\) = \(\large \frac {12}{18}\)

 

\(\large \frac {4}{6}\)

Ans: 

\(\large \frac {4}{6}\) = \(\large \frac {4\,×\,3}{6\,×\,3}\) = \(\large \frac {12}{18}\)

 

\(\large \frac {2}{9}\)

Ans: 

\(\large \frac {2}{9}\) = \(\large \frac {2\,×\,2}{9\,×\,2}\) = \(\large \frac {4}{18}\)

 

\(\large \frac {7}{9}\)

Ans: 

\(\large \frac {7}{9}\) = \(\large \frac {7\,×\,2}{9\,×\,2}\) = \(\large \frac {14}{18}\)

 

\(\large \frac {5}{3}\) 

Ans: 

\(\large \frac {5}{3}\) = \(\large \frac {5\,×\,6}{3\,×\,6}\) = \(\large \frac {30}{18}\)

3. Find an equivalent fraction with denominator 5, for each of the following fractions.

\(\large \frac {6}{15}\)

Ans: 

\(\large \frac {6}{15}\) = \(\large \frac {6\,÷\,3}{15\,÷\,3}\) = \(\large \frac {2}{5}\)

 

\(\large \frac {10}{25}\)

Ans: 

\(\large \frac {10}{25}\) = \(\large \frac {10\,÷\,5}{25\,÷\,5}\) = \(\large \frac {2}{5}\)

 

\(\large \frac {12}{30}\)

Ans: 

\(\large \frac {12}{30}\) = \(\large \frac {12\,÷\,7}{30\,÷\,6}\) = \(\large \frac {2}{5}\)

 

\(\large \frac {6}{10}\)

Ans: 

\(\large \frac {6}{10}\) = \(\large \frac {6\,÷\,2}{10\,÷\,2}\) = \(\large \frac {4}{5}\)

 

\(\large \frac {21}{35}\)

Ans: 

\(\large \frac {21}{35}\) = \(\large \frac {21\,÷\,7}{35\,÷\,7}\) = \(\large \frac {3}{5}\)

4. From the fractions given below, pair off the equivalent fractions.

\(\large \frac {2}{3}\)

Ans: 

\(\large \frac {2}{3}\) = \(\large \frac {2\,×\,2}{3\,×\,2}\) = \(\large \frac {4}{6}\)

 

\(\large \frac {5}{7}\)

Ans: 

\(\large \frac {5}{7}\) = \(\large \frac {5\,×\,2}{7\,×\,2}\) = \(\large \frac {10}{14}\)

 

\(\large \frac {5}{11}\)

Ans: 

\(\large \frac {5}{11}\) = \(\large \frac {5\,×\,3}{11\,×\,3}\) = \(\large \frac {15}{33}\)

 

\(\large \frac {7}{9}\)

Ans: 

\(\large \frac {7}{9}\) = \(\large \frac {7\,×\,2}{9\,×\,2}\) = \(\large \frac {14}{18}\)

5. Find two equivalent fractions for each of the following fractions.

\(\large \frac {7}{9}\)

Ans: 

\(\large \frac {7}{9}\) = \(\large \frac {7\,×\,2}{9\,×\,2}\) = \(\large \frac {14}{18}\)

 

\(\large \frac {7}{9}\) = \(\large \frac {7\,×\,3}{9\,×\,3}\) = \(\large \frac {21}{27}\)

 

\(\large \frac {4}{5}\)

Ans: 

\(\large \frac {4}{5}\) = \(\large \frac {4\,×\,2}{5\,×\,2}\) = \(\large \frac {8}{10}\)

 

\(\large \frac {4}{5}\) = \(\large \frac {4\,×\,3}{5\,×\,3}\) = \(\large \frac {12}{15}\)

 

\(\large \frac {3}{11}\)

Ans: 

\(\large \frac {3}{11}\) = \(\large \frac {3\,×\,2}{11\,×\,2}\) = \(\large \frac {6}{22}\)

 

\(\large \frac {3}{11}\) = \(\large \frac {3\,×\,3}{11\,×\,3}\) = \(\large \frac {9}{33}\)

Practice set 18

Convert the given fractions into like fractions.

(1) \(\large \frac {3}{4}\), \(\large \frac {5}{8}\)

Ans: The number 8 is a multiple of both 4 and 8. So, make 8 as the common denominator.

\(\large \frac {3}{4}\), \(\large \frac {5}{8}\)

\(\large \frac {3\,×\,2}{4\,×\,2}\), \(\large \frac {5}{8}\)

∴ \(\large \frac {6}{8}\), \(\large \frac {5}{8}\)

 

Therefore, \(\large \frac {6}{8}\), \(\large \frac {5}{8}\) are the required like fractions.

(2) \(\large \frac {3}{5}\), \(\large \frac {3}{7}\)

Ans: The number 35 is a multiple of both 5 and 7. So, make 35 as the common denominator.

 

\(\large \frac {3}{5}\), \(\large \frac {3}{7}\)

\(\large \frac {3\,×\,7}{5\,×\,7}\), \(\large \frac {3\,×\,5}{7\,×\,5}\)

∴ \(\large \frac {21}{35}\), \(\large \frac {15}{35}\)

 

Therefore, \(\large \frac {21}{35}\), \(\large \frac {15}{35}\) are the required like fractions.

(3) \(\large \frac {4}{5}\), \(\large \frac {3}{10}\)

Ans: The number 10 is a multiple of both 5 and 10. So, make 10 as the common denominator.

 

\(\large \frac {4}{5}\), \(\large \frac {3}{10}\)

\(\large \frac {4\,×\,2}{5\,×\,2}\), \(\large \frac {3}{10}\)

∴ \(\large \frac {8}{10}\), \(\large \frac {3}{10}\)

 

Therefore, \(\large \frac {8}{10}\), \(\large \frac {3}{10}\) are the required like fractions.

(4) \(\large \frac {2}{9}\), \(\large \frac {1}{6}\)

Ans: The number 18 is a multiple of both 9 and 6. So, make 18 as the common denominator.

 

\(\large \frac {2}{9}\), \(\large \frac {1}{6}\)

\(\large \frac {2\,×\,2}{9\,×\,2}\), \(\large \frac {1\,×\,3}{6\,×\,3}\)

∴ \(\large \frac {4}{18}\), \(\large \frac {3}{18}\)

 

Therefore, \(\large \frac {4}{18}\), \(\large \frac {3}{18}\) are the required like fractions.

(5) \(\large \frac {1}{4}\), \(\large \frac {2}{3}\)

Ans: The number 12 is a multiple of both 4 and 3. So, make 12 as the common denominator.

 

\(\large \frac {1}{4}\), \(\large \frac {2}{3}\)

\(\large \frac {1\,×\,3}{4\,×\,3}\), \(\large \frac {2\,×\,4}{3\,×\,4}\)

∴ \(\large \frac {3}{12}\), \(\large \frac {8}{12}\)

 

Therefore, \(\large \frac {3}{12}\), \(\large \frac {8}{12}\) are the required like fractions.

(6) \(\large \frac {5}{6}\), \(\large \frac {4}{5}\)

Ans: The number 30 is a multiple of both 6 and 5. So, make 30 as the common denominator.

 

\(\large \frac {5}{6}\), \(\large \frac {4}{5}\)

\(\large \frac {5\,×\,5}{6\,×\,5}\), \(\large \frac {4\,×\,6}{5\,×\,6}\)

∴ \(\large \frac {25}{30}\), \(\large \frac {24}{30}\)

 

Therefore, \(\large \frac {25}{30}\), \(\large \frac {24}{30}\) are the required like fractions.

(7) \(\large \frac {3}{8}\), \(\large \frac {1}{6}\)

Ans: The number 24 is a multiple of both 8 and 6. So, make 24 as the common denominator.

 

\(\large \frac {3}{8}\), \(\large \frac {1}{6}\)

\(\large \frac {3\,×\,3}{8\,×\,3}\), \(\large \frac {1\,×\,4}{6\,×\,4}\)

∴ \(\large \frac {9}{24}\), \(\large \frac {4}{24}\)

 

Therefore, \(\large \frac {9}{24}\), \(\large \frac {4}{24}\) are the required like fractions.

(8) \(\large \frac {1}{6}\), \(\large \frac {4}{9}\)

Ans: The number 18 is a multiple of both 6 and 9. So, make 18 as the common denominator.

 

\(\large \frac {1}{6}\), \(\large \frac {4}{9}\)

\(\large \frac {1\,×\,3}{6\,×\,3}\), \(\large \frac {4\,×\,2}{9\,×\,2}\)

∴ \(\large \frac {3}{18}\), \(\large \frac {8}{18}\)

 

Therefore, \(\large \frac {3}{18}\), \(\large \frac {8}{18}\) are the required like fractions.

Practice set 19

Write the proper symbol from < , > , or = in the box.

(1) \(\large \frac {3}{7}\) \(\large \frac {3}{7}\)

Ans: 

\(\large \frac {3}{7}\) = \(\large \frac {3}{7}\)

(2) \(\large \frac {3}{8}\) \(\large \frac {2}{8}\)

Ans: 

\(\large \frac {3}{8}\) > \(\large \frac {2}{8}\)

(3) \(\large \frac {2}{11}\) \(\large \frac {10}{11}\)

Ans: 

\(\large \frac {2}{11}\) < \(\large \frac {10}{11}\)

(4) \(\large \frac {5}{15}\) \(\large \frac {10}{30}\)

Ans: 

\(\large \frac {5}{15}\) ⬜ \(\large \frac {10}{30}\)

∴ \(\large \frac {5\,×\,2}{15\,×\,2}\) ⬜ \(\large \frac {10}{30}\)

∴ \(\large \frac {10}{30}\) = \(\large \frac {10}{30}\)

 

∴ \(\large \frac {5}{15}\) = \(\large \frac {10}{30}\)

(5) \(\large \frac {5}{8}\) \(\large \frac {5}{9}\)

Ans: 

\(\large \frac {5}{8}\) ⬜ \(\large \frac {5}{8}\)

∴ \(\large \frac {5\,×\,9}{8\,×\,9}\) ⬜ \(\large \frac {5\,×\,8}{9\,×\,8}\)

∴ \(\large \frac {45}{72}\) > \(\large \frac {40}{72}\)

 

\(\large \frac {5}{8}\) > \(\large \frac {5}{9}\)

(6) \(\large \frac {4}{7}\) \(\large \frac {4}{11}\)

Ans: 

\(\large \frac {4}{7}\) ⬜ \(\large \frac {4}{11}\)

∴ \(\large \frac {4\,×\,11}{7\,×\,11}\) ⬜ \(\large \frac {4\,×\,7}{11\,×\,7}\)

∴ \(\large \frac {44}{77}\) > \(\large \frac {28}{77}\)

 

∴ \(\large \frac {4}{7}\) > \(\large \frac {4}{11}\)

(7) \(\large \frac {10}{11}\) \(\large \frac {10}{13}\)

Ans: 

\(\large \frac {10}{11}\) ⬜ \(\large \frac {10}{13}\)

∴ \(\large \frac {10\,×\,13}{11\,×\,13}\) ⬜ \(\large \frac {10\,×\,11}{13\,×\,11}\)

∴ \(\large \frac {130}{143}\) > \(\large \frac {110}{143}\)

 

∴ \(\large \frac {10}{11}\) > \(\large \frac {10}{13}\)

(8) \(\large \frac {1}{5}\) \(\large \frac {1}{9}\)

Ans: 

\(\large \frac {1}{5}\) ⬜ \(\large \frac {1}{9}\)

∴ \(\large \frac {1\,×\,9}{5\,×\,9}\) ⬜ \(\large \frac {1\,×\,5}{9\,×\,5}\)

∴ \(\large \frac {9}{45}\) > \(\large \frac {5}{45}\)

 

∴ \(\large \frac {1}{5}\) > \(\large \frac {1}{9}\)

(9) \(\large \frac {5}{6}\) \(\large \frac {1}{8}\)

Ans: 

\(\large \frac {5}{6}\) ⬜ \(\large \frac {1}{8}\)

∴ \(\large \frac {5\,×\,4}{6\,×\,4}\) ⬜ \(\large \frac {1\,×\,3}{8\,×\,3}\)

∴ \(\large \frac {20}{24}\) > \(\large \frac {3}{24}\)

 

∴ \(\large \frac {5}{6}\) > \(\large \frac {1}{8}\)

(10) \(\large \frac {5}{12}\) \(\large \frac {1}{6}\)

Ans: 

\(\large \frac {5}{12}\) ⬜ \(\large \frac {1}{6}\)

∴ \(\large \frac {5}{12}\) ⬜ \(\large \frac {1\,×\,2}{6\,×\,2}\)

∴ \(\large \frac {5}{12}\) > \(\large \frac {2}{12}\)

 

∴ \(\large \frac {5}{12}\) > \(\large \frac {1}{6}\)

(11) \(\large \frac {7}{8}\) \(\large \frac {14}{16}\)

Ans: 

\(\large \frac {7}{8}\) ⬜ \(\large \frac {14}{16}\)

∴ \(\large \frac {7\,×\,2}{8\,×\,2}\) ⬜ \(\large \frac {14}{16}\)

∴ \(\large \frac {14}{16}\) = \(\large \frac {14}{16}\)

 

∴ \(\large \frac {7}{8}\) = \(\large \frac {14}{16}\)

(12) \(\large \frac {4}{9}\) \(\large \frac {4}{9}\)

Ans: 

\(\large \frac {4}{9}\) = \(\large \frac {4}{9}\)

(13) \(\large \frac {5}{18}\) \(\large \frac {1}{9}\)

Ans: 

\(\large \frac {5}{18}\) ⬜ \(\large \frac {1}{9}\)

∴ \(\large \frac {5}{18}\) ⬜ \(\large \frac {1\,×\,2}{9\,×\,2}\)

∴ \(\large \frac {5}{18}\) > \(\large \frac {2}{18}\)

 

∴ \(\large \frac {5}{18}\) > \(\large \frac {1}{9}\)

(14) \(\large \frac {2}{3}\) \(\large \frac {4}{7}\)

Ans: 

\(\large \frac {2}{3}\) ⬜ \(\large \frac {4}{7}\)

∴ \(\large \frac {2\,×\,7}{3\,×\,7}\) ⬜ \(\large \frac {4\,×\,3}{7\,×\,3}\)

∴ \(\large \frac {14}{21}\) > \(\large \frac {12}{21}\)

 

∴ \(\large \frac {2}{3}\) > \(\large \frac {4}{7}\)

(15) \(\large \frac {3}{7}\) \(\large \frac {5}{9}\)

Ans: 

\(\large \frac {3}{7}\) ⬜ \(\large \frac {5}{9}\)

∴ \(\large \frac {3\,×\,9}{7\,×\,9}\) ⬜ \(\large \frac {5\,×\,7}{9\,×\,7}\)

∴ \(\large \frac {27}{63}\) < \(\large \frac {35}{63}\)

 

∴ \(\large \frac {3}{7}\) < \(\large \frac {5}{9}\)

(16) \(\large \frac {4}{15}\) ⬜ \(\large \frac {1}{5}\)

Ans: 

\(\large \frac {4}{15}\) ⬜ \(\large \frac {1}{5}\)

∴ \(\large \frac {4}{15}\) \(\large \frac {1\,×\,3}{5\,×\,3}\)

∴ \(\large \frac {4}{15}\) > \(\large \frac {3}{15}\)

 

∴ \(\large \frac {4}{15}\) > \(\large \frac {1}{5}\)

Practice set 20

1. Add

(1) \(\large \frac {1}{5}\) + \(\large \frac {3}{5}\)

Ans: 

\(\large \frac {1}{5}\) + \(\large \frac {3}{5}\)

= \(\large \frac {1\,+\,3}{5}\)

= \(\large \frac {4}{5}\)

 

∴ \(\large \frac {1}{5}\) + \(\large \frac {3}{5}\) = \(\large \frac {4}{5}\)

 

(2) \(\large \frac {2}{7}\) + \(\large \frac {4}{7}\)

Ans: 

\(\large \frac {2}{7}\) + \(\large \frac {4}{7}\)

= \(\large \frac {2\,+\,4}{7}\)

= \(\large \frac {6}{7}\)

 

∴ \(\large \frac {2}{7}\) + \(\large \frac {4}{7}\) = \(\large \frac {6}{7}\)

 

(3) \(\large \frac {7}{12}\) + \(\large \frac {2}{12}\)

Ans: 

\(\large \frac {7}{12}\) + \(\large \frac {2}{12}\)

= \(\large \frac {7\,+\,2}{12}\)

= \(\large \frac {9}{12}\)

= \(\large \frac {3\,×\,3}{3\,×\,4}\)

= \(\large \frac {3}{4}\)

 

∴ \(\large \frac {7}{12}\) + \(\large \frac {2}{12}\) = \(\large \frac {3}{4}\)

 

(4) \(\large \frac {2}{9}\) + \(\large \frac {7}{9}\)

Ans: 

\(\large \frac {2}{9}\) + \(\large \frac {7}{9}\)

= \(\large \frac {2\,+\,7}{9}\)

= \(\large \frac {9}{9}\)

= 1

 

∴ \(\large \frac {2}{9}\) + \(\large \frac {7}{9}\) = 1

 

(5) \(\large \frac {3}{15}\) + \(\large \frac {4}{15}\)

Ans: 

\(\large \frac {3}{15}\) + \(\large \frac {4}{15}\)

= \(\large \frac {3\,+\,4}{15}\)

= \(\large \frac {7}{15}\)

 

∴ \(\large \frac {3}{15}\) + \(\large \frac {4}{15}\) = \(\large \frac {7}{15}\)

 

(6) \(\large \frac {2}{7}\) + \(\large \frac {3}{7}\) + \(\large \frac {1}{7}\)

Ans: 

\(\large \frac {2}{7}\) + \(\large \frac {3}{7}\) + \(\large \frac {1}{7}\)

= \(\large \frac {2\,+\,3\,+\,1}{7}\)

= \(\large \frac {6}{7}\)

 

∴  \(\large \frac {2}{7}\) + \(\large \frac {3}{7}\) + \(\large \frac {1}{7}\) = \(\large \frac {6}{7}\)

 

(7) \(\large \frac {2}{10}\) + \(\large \frac {4}{10}\) + \(\large \frac {3}{10}\)

Ans: 

\(\large \frac {2}{10}\) + \(\large \frac {4}{10}\) + \(\large \frac {3}{10}\)

= \(\large \frac {2\,+\,4\,+\,3}{10}\)

= \(\large \frac {9}{10}\)

 

∴ \(\large \frac {2}{10}\) + \(\large \frac {4}{10}\) + \(\large \frac {3}{10}\) = \(\large \frac {9}{10}\)

 

(8) \(\large \frac {4}{9}\) + \(\large \frac {1}{9}\)

Ans: 

\(\large \frac {4}{9}\) + \(\large \frac {1}{9}\)

= \(\large \frac {4\,+\,1}{9}\)

= \(\large \frac {5}{9}\)

 

∴ \(\large \frac {4}{9}\) + \(\large \frac {1}{9}\) = \(\large \frac {5}{9}\)

 

(9) \(\large \frac {5}{8}\) + \(\large \frac {3}{8}\)

Ans: 

\(\large \frac {5}{8}\) + \(\large \frac {3}{8}\)

= \(\large \frac {5\,+\,3}{8}\)

= \(\large \frac {8}{8}\)

= 1

 

∴ \(\large \frac {5}{8}\) + \(\large \frac {3}{8}\) = 1

2. Mother gave \(\large \frac {3}{8}\ of one guava to Meena and \(\large \frac {2}{8}\ of the guava to Geeta. What part of the guava did she give them altogether?

Ans: 

Mother gave \(\large \frac {3}{8}\ guava to Meena and \(\large \frac {2}{8}\ guava to Geeta.

Altogether she gave,

\(\large \frac {3}{8}\ + \(\large \frac {2}{8}\

= \(\large \frac {3\,+\,2}{8}\ 

= \(\large \frac {5}{8}\ 


Ans: Mother gave \(\large \frac {5}{8}\ part of the guava altogether.

3. The girls of Std V cleaned \(\large \frac {3}{4}\ of a field while the boys of Std IV cleaned \(\large \frac {1}{4}\. What part of the field was cleaned altogether?

Ans: 

Girls cleaned \(\large \frac {3}{4}\ of field Boys cleaned \(\large \frac {2}{8}\ of field

Altogether they cleaned,

\(\large \frac {3}{4}\ + \(\large \frac {2}{8}\

= \(\large \frac {3\,×\,2}{4\,×\,2}\ + \(\large \frac {2}{8}\

= \(\large \frac {6}{8}\ + \(\large \frac {2}{8}\

= \(\large \frac {6\,+\,2}{8}\ 

= \(\large \frac {8}{8}\ 

= 1 (Whole field)


Ans: Altogether they cleaned the whole field.

Practice set 21

1. Subtract

(1) \(\large \frac {5}{7}\) – \(\large \frac {1}{7}\)

Ans: 

\(\large \frac {3}{15}\) – \(\large \frac {4}{15}\)

= \(\large \frac {3\,–\,4}{15}\)

= \(\large \frac {7}{15}\)

 

∴ \(\large \frac {5}{7}\) – \(\large \frac {1}{7}\) = \(\large \frac {7}{15}\)

 

(2) \(\large \frac {5}{8}\) – \(\large \frac {3}{8}\)

Ans: 

\(\large \frac {5}{8}\) – \(\large \frac {3}{8}\)

= \(\large \frac {5\,–\,3}{8}\)

= \(\large \frac {2}{8}\)

= \(\large \frac {2\,×\,1}{2\,×\,4}\)

= \(\large \frac {1}{4}\)

 

∴ \(\large \frac {5}{8}\) – \(\large \frac {3}{8}\) = \(\large \frac {1}{4}\)

 

(3) \(\large \frac {7}{9}\) – \(\large \frac {2}{9}\)

Ans: 

\(\large \frac {7}{9}\) – \(\large \frac {2}{9}\)

= \(\large \frac {7\,–\,2}{9}\)

= \(\large \frac {5}{9}\)

 

∴ \(\large \frac {7}{9}\) – \(\large \frac {2}{9}\) = \(\large \frac {5}{9}\)

 

(4) \(\large \frac {8}{11}\) – \(\large \frac {5}{11}\)

Ans: 

\(\large \frac {8}{11}\) – \(\large \frac {5}{11}\)

= \(\large \frac {8\,–\,5}{11}\)

= \(\large \frac {3}{11}\)

 

∴ \(\large \frac {8}{11}\) – \(\large \frac {5}{11}\) = \(\large \frac {3}{11}\)

 

(5) \(\large \frac {9}{13}\) – \(\large \frac {4}{13}\)

Ans: 

\(\large \frac {9}{13}\) – \(\large \frac {4}{13}\)

= \(\large \frac {9\,–\,4}{13}\)

= \(\large \frac {5}{13}\)

 

∴ \(\large \frac {9}{13}\) – \(\large \frac {4}{13}\) = \(\large \frac {5}{13}\)

 

(6) \(\large \frac {7}{10}\) – \(\large \frac {3}{10}\)

Ans: 

\(\large \frac {7}{10}\) – \(\large \frac {3}{10}\)

= \(\large \frac {7\,–\,3}{10}\)

= \(\large \frac {4}{10}\)

= \(\large \frac {2\,×\,2}{2\,×\,5}\)

= \(\large \frac {2}{5}\)

 

∴ \(\large \frac {7}{10}\) – \(\large \frac {3}{10}\) = \(\large \frac {2}{5}\)

 

(7) \(\large \frac {9}{12}\) – \(\large \frac {2}{12}\) 

Ans: 

\(\large \frac {9}{12}\) – \(\large \frac {2}{12}\) 

= \(\large \frac {9\,–\,2}{12}\)

= \(\large \frac {7}{12}\)

 

∴ \(\large \frac {9}{12}\) – \(\large \frac {2}{12}\) = \(\large \frac {7}{12}\)

 

(8) \(\large \frac {10}{15}\) – \(\large \frac {3}{15}\)

Ans: 

\(\large \frac {10}{15}\) – \(\large \frac {3}{15}\)

= \(\large \frac {10\,–\,3}{15}\)

= \(\large \frac {7}{15}\)

 

∴ \(\large \frac {10}{15}\) – \(\large \frac {3}{15}\) = \(\large \frac {7}{15}\)

2. \(\large \frac {7}{10}\ of a wall is to be painted. Ramu has painted \(\large \frac {4}{10}\ of it. How much more needs to be painted?

Ans: 

\(\large \frac {7}{10}\ of a wall is to be painted.

Ramu has painted \(\large \frac {4}{10}\ of it.

 

So, the part of the wall which needs to be painted is,

\(\large \frac {7}{10}\ – \(\large \frac {4}{10}\ 

= \(\large \frac {7\,–\,4}{10}\)

= \(\large \frac {3}{10}\)

 

∴ \(\large \frac {3}{10}\) more of the wall needs to be painted.

Practice set 22

1. Add

(1) \(\large \frac {1}{8}\) + \(\large \frac {3}{4}\)

Ans: 

\(\large \frac {1}{8}\) + \(\large \frac {3}{4}\)

=  \(\large \frac {1}{8}\) + \(\large \frac {3\,×\,2}{4\,×\,2}\)

= \(\large \frac {1}{8}\) + \(\large \frac {6}{8}\)

= \(\large \frac {1\,+\,6}{8}\)

= \(\large \frac {7}{8}\)

 

∴ \(\large \frac {1}{8}\) + \(\large \frac {3}{4}\) = \(\large \frac {7}{8}\)

 

(2) \(\large \frac {2}{21}\) + \(\large \frac {3}{7}\)

Ans: 

\(\large \frac {2}{21}\) + \(\large \frac {3}{7}\)

=  \(\large \frac {2}{21}\) + \(\large \frac {3\,×\,3}{7\,×\,3}\)

= \(\large \frac {2}{21}\) + \(\large \frac {9}{21}\)

= \(\large \frac {2\,+\,9}{21}\)

= \(\large \frac {11}{21}\)

 

∴ \(\large \frac {2}{21}\) + \(\large \frac {3}{7}\) = \(\large \frac {11}{21}\)

 

(3) \(\large \frac {2}{5}\) + \(\large \frac {1}{3}\)

Ans: 

\(\large \frac {2}{5}\) + \(\large \frac {1}{3}\)

= \(\large \frac {2\,×\,3}{5\,×\,3}\) + \(\large \frac {1\,×\,5}{3\,×\,5}\)

= \(\large \frac {6}{15}\) + \(\large \frac {5}{15}\)

= \(\large \frac {6\,+\,5}{15}\)

= \(\large \frac {11}{15}\)

 

∴ \(\large \frac {2}{5}\) + \(\large \frac {1}{3}\) = \(\large \frac {11}{15}\)

 

(4) \(\large \frac {2}{7}\) + \(\large \frac {1}{2}\)

Ans: 

\(\large \frac {2}{7}\) + \(\large \frac {1}{2}\)

= \(\large \frac {2\,×\,2}{7\,×\,2}\) + \(\large \frac {1\,×\,7}{2\,×\,7}\)

= \(\large \frac {4}{14}\) + \(\large \frac {7}{14}\)

= \(\large \frac {4\,+\,7}{14}\)

= \(\large \frac {11}{14}\)

 

∴ \(\large \frac {2}{7}\) + \(\large \frac {1}{2}\) = \(\large \frac {11}{14}\)

 

(5) \(\large \frac {3}{9}\) + \(\large \frac {3}{5}\)

Ans: 

\(\large \frac {3}{9}\) + \(\large \frac {3}{5}\)

= \(\large \frac {3\,×\,5}{9\,×\,5}\) + \(\large \frac {3\,×\,9}{5\,×\,9}\)

= \(\large \frac {15}{45}\) + \(\large \frac {27}{45}\)

= \(\large \frac {15\,+\,27}{45}\)

= \(\large \frac {42}{45}\)

 

∴ \(\large \frac {3}{9}\) + \(\large \frac {3}{5}\) = \(\large \frac {42}{45}\)

2. Subtract

(1) \(\large \frac {3}{10}\) – \(\large \frac {1}{20}\)

Ans: 

\(\large \frac {3}{10}\) – \(\large \frac {1}{20}\)

= \(\large \frac {3\,×\,2}{10\,×\,2}\) – \(\large \frac {1}{20}\)

= \(\large \frac {6}{20}\) – \(\large \frac {1}{20}\)

= \(\large \frac {6\,–\,1}{20}\)

= \(\large \frac {5}{20}\)

= \(\large \frac {5\,×\,1}{5\,×\,4}\) 

= \(\large \frac {1}{4}\)

 

∴ \(\large \frac {3}{10}\) – \(\large \frac {1}{20}\) = \(\large \frac {1}{4}\)

 

(2) \(\large \frac {3}{4}\) – \(\large \frac {1}{2}\)

Ans: 

\(\large \frac {3}{4}\) – \(\large \frac {1}{2}\)

= \(\large \frac {3}{4}\) – \(\large \frac {1\,×\,2}{2\,×\,2}\)

= \(\large \frac {3}{4}\) – \(\large \frac {2}{4}\)

= \(\large \frac {3\,–\,2}{4}\)

= \(\large \frac {1}{4}\)

 

∴ \(\large \frac {3}{4}\) – \(\large \frac {1}{2}\) = \(\large \frac {1}{4}\)

 

(3) \(\large \frac {6}{14}\) – \(\large \frac {2}{7}\)

Ans: 

\(\large \frac {6}{14}\) – \(\large \frac {2}{7}\)

= \(\large \frac {6}{14}\) – \(\large \frac {2\,×\,2}{7\,×\,2}\)

= \(\large \frac {6}{14}\) – \(\large \frac {4}{14}\)

= \(\large \frac {6\,–\,4}{14}\)

= \(\large \frac {2}{14}\)

= \(\large \frac {2\,×\,1}{2\,×\,7}\)

= \(\large \frac {1}{7}\)

 

∴ \(\large \frac {6}{14}\) – \(\large \frac {2}{7}\) = \(\large \frac {1}{7}\)

 

(4) \(\large \frac {4}{6}\) – \(\large \frac {3}{5}\)

Ans: 

\(\large \frac {4}{6}\) – \(\large \frac {3}{5}\)

= \(\large \frac {4\,×\,5}{6\,×\,5}\) – \(\large \frac {3\,×\,6}{5\,×\,6}\)

= \(\large \frac {20}{30}\) – \(\large \frac {18}{30}\)

= \(\large \frac {20\,–\,18}{30}\)

= \(\large \frac {2}{30}\)

= \(\large \frac {2\,×\,1}{2\,×\,15}\)

= \(\large \frac {1}{15}\)

 

∴ \(\large \frac {4}{6}\) – \(\large \frac {3}{5}\) = \(\large \frac {1}{15}\)

 

(5) \(\large \frac {2}{7}\) – \(\large \frac {1}{4}\)

Ans: 

\(\large \frac {2}{7}\) – \(\large \frac {1}{4}\)

= \(\large \frac {2\,×\,4}{7\,×\,4}\) – \(\large \frac {1\,×\,7}{4\,×\,7}\)

= \(\large \frac {8}{28}\) – \(\large \frac {7}{28}\)

= \(\large \frac {8\,–\,7}{28}\)

= \(\large \frac {1}{28}\)

 

∴ \(\large \frac {2}{7}\) – \(\large \frac {1}{4}\) = \(\large \frac {1}{28}\)

Practice set 23

1. What is \(\large \frac {1}{3}\) of each of the collections given below?

(1) 15 pencils 

Ans: 

\(\large \frac {1}{3}\) × 15

= 15 ÷ 3

= 5 pencils

 

(2) 21 balloons 

Ans: 

\(\large \frac {1}{3}\) × 21

= 21 ÷ 3

= 7 balloons

 

(3) 9 children 

Ans: 

\(\large \frac {1}{3}\) × 9

= 9 ÷ 3

= 3 children

 

(4) 18 books

Ans: 

\(\large \frac {1}{3}\) × 18

= 18 ÷ 3

= 6 books

2. What is \(\large \frac {1}{5}\) of each of the following ? 

(1) 20 rupees 

Ans: 

\(\large \frac {1}{5}\) × 20

= 20 ÷ 5

= 4 rupees

 

(2) 30 km

Ans: 

\(\large \frac {1}{5}\) × 30

= 30 ÷ 5

= 6 km

 

(3) 15 litres 

Ans: 

\(\large \frac {1}{5}\) × 15

= 15 ÷ 5

= 3 litres

 

(4) 25 cm

Ans: 

\(\large \frac {1}{5}\) × 25

= 25 ÷ 5

= 5 cm

3. Find the part of each of the following numbers equal to the given fraction.

(1) \(\large \frac {2}{3}\) of 30 

Ans: 

We’ll take \(\large \frac {1}{3}\) of 30 and take it twice

 

∴ \(\large \frac {1}{3}\) × 30 

= 30 ÷ 3

= 10 

 

Now,

2 × 10 = 20

 

∴ \(\large \frac {2}{3}\) of 30 = 20

 

(2) \(\large \frac {7}{11}\) of 22 

Ans: 

We’ll take \(\large \frac {1}{11}\) of 22 and take it seven times

 

∴ \(\large \frac {1}{11}\) × 22 

= 22 ÷ 11

= 2 

 

Now,

7 × 2 = 14

 

∴ \(\large \frac {2}{3}\) of 30 = 14

 

(3) \(\large \frac {3}{8}\) of 64 

Ans: 

We’ll take \(\large \frac {1}{8}\) of 64 and take it thrice 

 

∴ \(\large \frac {1}{8}\) × 64 

= 64 ÷ 8

= 8 

 

Now,

3 × 8 = 24

 

∴ \(\large \frac {3}{8}\) of 64 = 24

 

(4) \(\large \frac {5}{13}\) of 65

Ans: 

We’ll take \(\large \frac {1}{13}\) of 65 and take it five times

 

∴ \(\large \frac {1}{13}\) × 65 

= 65 ÷ 13

= 5 

 

Now,

5 × 5 = 25

 

∴ \(\large \frac {5}{13}\) of 65 = 25