Maharashtra Board Textbook Solutions for Standard Eight

Chapter 6 - Factorisation of Algebraic Expressions

Practice set 6.1

1. Factorise.

(1) x² + 9x + 18

Solution: 

x² + 9x + 18

= x² + 6x + 3x + 18

= x (x + 6) + 3(x + 6)

= (x + 6) (x + 3)

 

∴ x² + 9x + 18 = (x + 6) (x + 3)

 

(2) x² – 10x + 9 

Solution: 

x² – 10x + 9 

= x² – 9x – x + 9

= x (x – 9) – 1(x – 9)

= (x – 9) (x – 1)

 

∴ x² – 10x + 9 = (x – 9) (x – 1)

 

(3) y² + 24y + 144 

Solution: 

y² + 24y + 144 

= y² + 12y + 12y + 144

= y(y + 12) + 12(y + 12)

= (y + 12) (y + 12)

 

∴ y² + 24y + 144 = (y + 12) (y + 12)

 

(4) 5y² + 5y – 10 

Solution: 

5y² + 5y – 10

= 5 (y² + y – 2)

= 5 (y² + 2y – y – 2)

= 5 [y(y + 2) – 1(y + 2)]

= 5 (p + 2) (y – 1)

 

∴ 5y² + 5y – 10 = 5 (p + 2) (y – 1)

 

(5) p² – 2p – 35 

Solution: 

p² – 2p – 35 

= p² – 7p + 5p – 35

= p(p – 7) + 5(p – 7)

= (p – 7) (p + 5)

 

∴ p² – 2p – 35 = (p – 7) (p + 5)

 

(6) p² – 7p – 44

Solution: 

p² – 7p – 44

= p² – 11p + 4p – 44

= p(p – 11) + 4(p – 11)

= (p – 11) (p + 4)

 

∴ p² – 7p – 44 = (p – 11) (p + 4)

 

(7) m² – 23m + 120 

Solution: 

m² – 23m + 120

= m² – 15m – 8m + 120

= m (m – 15) – 8 (m – 15)

= (m – 15) (m – 8)

 

∴ m² – 23m + 120 = (m – 15) (m – 8)

 

(8) m² – 25m + 100 

Solution: 

m² – 25m + 100

= m² – 20m – 5m + 100

= m(m – 20) – 5(m – 20)

= (m – 20) (m – 5)

 

∴ m² – 25m + 100 = (m – 20) (m – 5)

 

(9) 3x² + 14x + 15

Solution: 

3x² + 14x + 15 

= 3x² + 9x + 5x + 15

= 3x(x + 3) + 5(x + 3)

= (x + 3) (3x + 5)

 

∴ 3x² + 14x + 15 = (x + 3) (3x + 5)

 

(10) 2x² + x – 45 

Solution: 

2x² + x – 45 

= 2x² + 10x – 9x – 45

= 2x(x + 5) – 9 (x + 5)

= (x + 5) (2x – 9)

 

∴ 2x² + x – 45 = (x + 5) (2x – 9)

 

(11) 20x² – 26x + 8 

Solution: 

20x² – 26x + 8

= 2 (10x² – 13x + 4) 

= 2 (10x² – 8x – 5x + 4)

= 2 [2x(5x – 4) – 1(5x – 4)]

= 2 (5x – 4) (2x – 1)

 

∴ 20x² – 26x + 8 = 2 (5x – 4) (2x – 1)

 

(12) 44x² – x – 3

Solution: 

44x² – x – 3 

= 44x² – 12x + 11x – 3

= 4x(11x – 3) + 1(11x – 3)

= (11x – 3) (4x + 1)

 

∴ 44x² – x – 3 = (11x – 3) (4x + 1)

Practice set 6.2

1. Factorise. 

(1) x³ + 64y³

Solution:

x³ + 64y³

= x³ + (4y)³

Here, a = x and b = 4y

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ x³ + 64y³ 

= (x + 4y) [x² – x(4y) + (4y)²]

= (x + 4y)(x² – 4xy + 16y²)

 

∴ x³ + 64y³ = (x + 4y)(x² – 4xy + 16y²)

 

(2) 125p³ + q³ 

Solution:

125p³ + q³

= (5p)³ + q³

Here, a = 5p and b = q

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ 125p³ + q³ 

= (5p + q)[(5p)² – (5p)(q) + q²]

= (5p + q)(25p² – 5pq + q²)

 

∴ 125p³ + q³ = (5p + q)(25p² – 5pq + q²)

 

(3) 125k³ + 27m³

Solution:

125k³ + 27m³

= (5k)³ + (3m)³

Here, a = 5k and b = 3m

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ 125k³ + 27m³

= (5k + 3m) [(5k)² – (5k)(3m) + (3m)²]

= (5k + 3m)(25k² – 15km + 9m²)

 

∴ 125k³ + 27m³ = (5k + 3m)(25k² – 15km + 9m²)

 

(4) 2l³ + 432m³

Solution:

2l³ + 432m³

= 2 (l³ + 216m³) …[Common factor is 2]

= 2 [l³ + (6m)³]

Here, a = x and b = 4y

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ 2l³ + 432m³ 

= 2 {(l + 6m) [l² – l(6m) + (6m)²]}

= 2 (l + 6m) (l² – 6lm + 36m²)

 

∴ 2l³ + 432m³  = 2 (l + 6m) (l² – 6lm + 36m²)

 

(5) 24a³ + 81b³

Solution:

24a³ + 81b³

= 3 (8a³ + 27b³) …[Common factor is 3]

= 3 [(2a)³ + (3b)³] 

Here, a = 2a and b = 3b

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ 24a³ + 81b³

= 3 {(2a + 3b) [(2a)² – (2a)(3b) + (3b)²]}

= 3(2a + 3b)(4a² – 6ab + 9b²)

 

∴ 24a³ + 81b³ = 3(2a + 3b)(4a² – 6ab + 9b²)

 

(6) y³ + \(\large \frac {1}{8y³}\)

Solution:

y³ + \(\large \frac {1}{8y³}\)

= y³ + \(\large (\frac {1}{2y})\)³

Here, a = y and b = \(\large \frac {1}{2y}\)

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ y³ + \(\large \frac {1}{8y³}\) 

= \(\large (\small y + \large (\frac {1}{2y})\)) \(\large [\small y² – y(\frac {1}{2y}) + \large (\frac {1}{2y})²]\)

= \(\large (\small y + \large (\frac {1}{2y})\)) \(\large (\small y² – \frac {1}{2} + \large \frac {1}{4y²})\)

 

∴ y³ + \(\large \frac {1}{8y³}\) = \(\large (\small y + \large (\frac {1}{2y})\)) \(\large (\small y² – \frac {1}{2} + \large \frac {1}{4y²})\)

 

(7) a³ + \(\large \frac {8}{a³}\)

Solution:

a³ + \(\large \frac {8}{a³}\)

= a³ + \(\large (\frac {2}{a})\)³

Here, a = a and b = \(\large \frac {2}{a}\)

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ a³ + \(\large \frac {8}{a³}\)

= \(\large (\small a + \large (\frac {2}{a})\)) \(\large [\small a² – a(\frac {2}{a}) + \large (\frac {2}{a})²]\)

= \(\large (\small a + \large (\frac {2}{a})\)) \(\large (\small a² – 2 + \large \frac {4}{a²})\)

 

∴ a³ + \(\large \frac {8}{a³}\) = \(\large (\small a + \large (\frac {2}{a})\)) \(\large (\small a² – 2 + \large \frac {4}{a²})\)

 

(8) 1 + \(\large \frac {q³}{125}\)

Solution:

1 + \(\large \frac {q³}{125}\)

= 1³ + \(\large (\frac {q}{5})\)³

Here, a = 1 and b = \(\large \frac {q}{5}\)

 

We know that,

a³ + b³ = (a + b)(a² – ab + b²)

 

∴ 1 + \(\large \frac {q³}{125}\)

= \(\large (\small 1 + \large (\frac {q}{5})\)) \(\large [\small 1² – 1(\frac {q}{5}) + \large (\frac {q}{5})²]\)

= \(\large (\small 1 + \large (\frac {q}{5})\)) \(\large (\small 1 – \large (\frac {q}{5}) + \large \frac {q²}{24})\)

 

∴ 1 + \(\large \frac {q³}{125}\) = \(\large (\small 1 + \large (\frac {q}{5})\)) \(\large (\small 1 – \large (\frac {q}{5}) + \large \frac {q²}{24})\)

Practice set 6.3

1. Factorise : 

(1) y³ – 27 

Solution: 

y³ – 27

= y³ – (3)³

 

Here, a = y and b = 3

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ y³ – 27 

= (y – 3)[y² + y(3) + (3)2]

= (y – 3)(y² + 3y + 9)

 

∴ y³ – 27 = (y – 3)(y² + 3y + 9)

 

(2) x³ – 64y³

Solution: 

x³ – 64y³

= x³ – (4y)³

 

Here, a = x and b = 4y

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ x³ – 64y³

= (x – 4y)[x² + x(4y) + (4y)²]

= (x – 4y)(x² + 4xy + 16y²)

 

∴ x³ – 64y³ = (x – 4y)(x² + 4xy + 16y²)

 

(3) 27m³ – 216n³

Solution: 

27m³ – 216n³

= 27 (m³ – 8n³)

= 27 [m³ – (2n)³]

 

Here, a = m and b = 2n

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ 27m³ – 216n³

= 27 {(m – 2n) [m² + m(2n) + (2n)²]}

= 27 (m – 2n)(m² + 2mn + 4n²)

 

∴ 27m³ – 216n³ = 27 (m – 2n)(m² + 2mn + 4n²)

 

(4) 125y³ – 1

Solution: 

125y³ – 1

= (5y)³ – 1³

 

Here, a = 5y and b = 1

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ 125y³ – 1 

= (5y – 1) [(5y)² + (5y)(1) + (1)²]

= (5y – 1) (25y² + 5y + 1)

 

∴ 125y³ – 1 = (5y – 1) (25y² + 5y + 1)

 

(5) 8p³ – \(\large \frac {27}{p³}\)

Solution: 

8p³ − \(\large \frac {27}{p³}\)

= (2p)³ – \(\large (\frac {3}{p})³\)

 

Here,

a = 2p and b = \(\large \frac {3}{p}\)

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ 8p³ − \(\large \frac {27}{p³}\)

= \(\large(\)2p – \(\large (\frac {3}{p})\) \(\large[\)(2p)² + \(\large (2p) (\frac {3}{p})\) + \(\large \frac {3}{p}]\)²

= \(\large(\)2p – \(\large (\frac {3}{p})\) \(\large[\)4p² + 6 + \(\large \frac {9}{p²}]\)

 

∴ 8p³ − \(\large \frac {27}{p³}\) = \(\large(\)2p – \(\large (\frac {3}{p})\) \(\large[\)4p² + 6 + \(\large \frac {9}{p²}]\)

 

(6) 343a³ – 512b³

Solution: 

343a³ – 512b³

= (7a)³ – (8b)³

 

Here, A = 7a and B = 8b

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ 343a³ – 512b³

= (7a – 8b) [(7a)² + (7a)(8b) + (8b)²]

= (7a – 8b) (49a² + 56ab + 64b²)

 

∴ 343a³ – 512b³ = (7a – 8b) (49a² + 56ab + 64b²)

 

(7) 64x³ – 729y³

Solution: 

64x³ – 729y³

= (4x)³ – (9y)³

 

Here, a = 4x and b = 9y

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ 64x³ – 729y³

= (4x – 9y) [(4x)² + (4x) (9y) + (9y)²]

= (4x – 9y) (16x² + 36xy + 81y²)

 

∴ 64x³ – 729y³ = (4x – 9y) (16x² + 36xy + 81y²)

 

(8) 16a³ − \(\large \frac {128}{b³}\)

Solution: 

16a³ − \(\large \frac {128}{b³}\)

= 16 \(\large[\)a³ – \(\large \frac {8}{b³}]\)

= 16 \(\large[\)a³ – \(\large (\frac {2}{b})³]\)

 

Here,

A = a and B = \(\large \frac {2}{b}\)

 

We know that,

a³ – b³ = (a – b) (a² + ab + b²)

 

∴ 16a³ − \(\large \frac {128}{b³}\)

= 16 \(\large(\)a – \(\large (\frac {2}{b})\) \(\large[\)a² + \(\large a(\frac {2}{b})\) + \(\large \frac {2}{b}]\)²

= 16 \(\large(\)a – \(\large (\frac {2}{b})\) \(\large[\)a² + \(\large \frac {2a}{b}\) + \(\large \frac {4}{b²}\)

 

∴ 16a³ − \(\large \frac {128}{b³}\) = 16 \(\large(\)a – \(\large (\frac {2}{b})\) \(\large[\)a² + \(\large \frac {2a}{b}\) + \(\large \frac {4}{b²}\)

2. Simplify : 

(1) (x + y)³ – (x – y)³

Solution: 

Here, a = x + y and b = x – y

 

We know that,

a³ – b³ = (a – b)(a² + ab + b²)

 

∴ (x + y)³ – (x – y)³

= [(x + y) – (x – y)] [(x + y)² + (x + y) (x – y) + (x – y)]

= (x + y – x + y) [(x² + 2xy + y²) + (x² – y²) + (x² – 2xy + y²)]

= 2y(x² + x² + x² + 2xy – 2xy + y² – y² + y²)

= 2y (3x² + y²)

= 6x²y + 2y³

 

∴ (x + y)³ – (x – y)³ = 6x²y + 2y³

 

(2) (3a + 5b)³ – (3a – 5b)³

Solution: 

Here, A = 3a + 5b and B = 3a – 5b

 

We know that,

A³ – B³ = (A – B)(A² + AB + B²)

 

∴ (3a + 5b)³ – (3a – 5b)³

= [(3a + 5b) – (3a – 5b)] [(3a + 5b)² + (3a + 5b) (3a – 5b) + (3a – 5b)²]

= (3a + 5b – 3a + 5b) [(9a² + 30ab + 25b²) + (9a² – 25b²) + (9a² – 30ab + 25b²)]

= 10b (9a² + 9a² + 9a² + 30ab – 30ab + 25b² – 25b² + 25b²)

= 10b (27a² + 25b²)

= 270a²b + 250b³

 

∴ (3a + 5b)³ – (3a – 5b)³ = 270a²b + 250b³

 

(3) (a + b)³ – a³ – b³

Solution: 

We know that,

a³ – b³ = (a – b)(a² + ab + b²)]

 

∴ (a + b)³ – a³ – b³

= a³ + 3a²b + 3ab² + b³ – a³ – b³

= 3a²b + 3ab²

 

∴ (a + b)³ – a³ – b³ = 3a²b + 3ab²

 

(4) p³ – (p + 1)³

Solution: 

We know that,

a³ – b³ = (a – b)(a² + ab + b²)]

 

∴ p³ – (p + 1)³

= p³ – (p³ + 3p² + 3p + 1) …[∵ (a + b)³ = a³ + 3a²b + 3ab² + b³]

= p³ – p³ – 3p² – 3p – 1

= – 3p² – 3p – 1

 

∴ p³ – (p + 1)³ = – 3p² – 3p – 1

 

(5) (3xy – 2ab)³ – (3xy + 2ab)³

Solution: 

Here, A = 3xy – 2ab and B = 3xy + 2ab

 

We know that,

A³ – B³ = (A – B)(A² + AB + B²)

 

∴ (3xy – 2ab)³ – (3xy + 2ab)³

= [(3xy – 2ab) – (3xy + 2ab)] [(3xy – 2ab)² + (3xy – 2ab) (3xy + 2ab) + (3xy + 2ab)²]

= (3xy – 2ab – 3xy – 2ab) [(9x²y² – 12xyab + 4a²b²) + (9x²y² – 4a²b²) + (9x²y² + 12xyab + 4a²b²)]

= (– 4ab) (9x²y² + 9x²y² + 9x²y² – 12xyab + 12xyab + 4a²b² – 4a²b² + 4a²b²)

= (– 4ab) (27 xy² + 4a²b²)

= –108x²y²ab – 16a³b³

 

∴ (3xy – 2ab)³ – (3xy + 2ab)³ = –108x²y²ab – 16a³b³

Practice set 6.4

1. Simplify

1. \(\large \frac {m²\,–\,n²}{(m\,+\,n)²}\) × \(\large \frac {m²\,+\,mn\,+\,n²}{m³\,–\,n³}\)

Solution:

\(\large \frac {m²\,–\,n²}{(m\,+\,n)²}\) × \(\large \frac {m²\,+\,mn\,+\,n²}{m³\,–\,n³}\)

= \(\large \frac {(m\,+\,n)(m\,–\,n)}{(m\,+\,n)(m\,+\,n)}\) × \(\large \frac {m²\,+\,mn\,+\,n²}{(m\,–\,n)(m²\,+\,mn\,+\,n²)}\)

= \(\large \frac {1}{(m\,+\,n}\)

 

∴ \(\large \frac {m²\,–\,n²}{(m\,+\,n)²}\) × \(\large \frac {m²\,+\,mn\,+\,n²}{m³\,–\,n³}\) = \(\large \frac {1}{(m\,+\,n}\)

 

2. \(\large \frac {a²\,+\,10a\,+\,21}{a²\,+\,6a\,–\,7}\) × \(\large \frac {a²\,–\,1}{a\,+\,3}\)

Solution:

\(\large \frac {a²\,+\,10a\,+\,21}{a²\,+\,7a\,–\,a–\,7}\) × \(\large \frac {a²\,–\,1}{a\,+\,3}\)

= \(\large \frac {a²\,+\,7a\,+\,3a\,+\,21}{a²\,+\,6a\,–\,7}\) × \(\large \frac {a²\,–\,1²}{a\,+\,3}\)

= \(\large \frac {a(a\,+\,7)\,+\,3(a\,+\,7)}{a(a\,+\,7)\,–\,1(a\,+\,7)}\) × \(\large \frac {(a\,+\,1)(a\,–\,1)}{a\,+\,3}\)

= a + 1

 

∴ \(\large \frac {a²\,+\,10a\,+\,21}{a²\,+\,6a\,–\,7}\) × \(\large \frac {a²\,–\,1}{a\,+\,3}\) = a + 1

 

3. \(\large \frac {8x³\,–\,27y³}{4x²\,–\,9y²}\)

Solution:

\(\large \frac {8x³\,–\,27y³}{4x²\,–\,9y²}\)

= \(\large \frac {(2x)³\,–\,(3y)³}{(2x)²\,–\,(3y)²}\)

= \(\large \frac {(2x\,–\,3y)[(2x)²\,+\,(2x)(3y)\,+\,(3y)²}{(2x\,+\,3y)(2x\,–\,3y)}\)

= \(\large \frac {4x²\,+\,6xy\,+\,9y²}{2x\,+\,3y}\)

 

∴ \(\large \frac {8x³\,–\,27y³}{4x²\,–\,9y²}\) = \(\large \frac {4x²\,+\,6xy\,+\,9y²}{2x\,+\,3y}\)

 

4. \(\large \frac {x²\,–\,5x\,–\,24}{(x\,+\,3)(x\,+\,8)}\) × \(\large \frac {x²\,–\,64}{(x\,–\,8)²}\)

Solution:

\(\large \frac {x²\,–\,5x\,–\,24}{(x\,+\,3)(x\,+\,8)}\) × \(\large \frac {x²\,–\,64}{(x\,–\,8)²}\)

= \(\large \frac {x²\,–\,8x\,+\,3x\,–\,24}{(x\,+\,3)(x\,+\,8)}\) × \(\large \frac {(x)²\,–\,(8)²}{(x\,–\,8)²}\)

= \(\large \frac {x(x\,–\,8)\,+\,3(x\,–\,8)}{(x\,+\,3)(x\,+\,8)}\) × \(\large \frac {(x\,+\,8)(x\,–\,8)}{(x\,–\,8)(x\,–\,8)}\)

= \(\large \frac {(x\,–\,8)(x\,+\,3)}{(x\,+\,3)(x\,+\,8)}\) × \(\large \frac {(x\,+\,8)(x\,–\,8)}{(x\,–\,8)(x\,–\,8)}\)

= 1

 

∴ \(\large \frac {x²\,–\,5x\,–\,24}{(x\,+\,3)(x\,+\,8)}\) × \(\large \frac {x²\,–\,64}{(x\,–\,8)²}\) = 1

 

5. \(\large \frac {3x²\,–\,x\,–\,2}{x²\,–\,7x\,+\,12}\) ÷ \(\large \frac {3x²\,–\,7x\,–\,6}{x²\,–\,4}\)

Solution:

\(\large \frac {3x²\,–\,x\,–\,2}{x²\,–\,7x\,+\,12}\) ÷ \(\large \frac {3x²\,–\,7x\,–\,6}{x²\,–\,4}\)

= \(\large \frac {3x²\,–\,x\,–\,2}{x²\,–\,7x\,+\,12}\) × \(\large \frac {x²\,–\,4}{3x²\,–\,7x\,–\,6}\)

= \(\large \frac {3x²\,–\,3x\,+\,2x\,–\,2}{x²\,–\,4x\,–\,3x\,+\,12}\) × \(\large \frac {(x)²\,–\,(2)²}{3x²\,–\,9x\,+\,2x\,–\,6}\)

= \(\large \frac {3x(x\,–\,1)\,+\,2(x\,–\,1)}{x(x\,–\,4)\,–\,3(x\,–\,4)}\) × \(\large \frac {(x\,+\,2)(x\,–\,2)}{3x(x\,–\,3)\,+\,(x\,–\,3)}\)

= \(\large \frac {(x\,–\,1)(3x\,+\,2)}{(x\,–\,4)(x\,–\,3)}\) × \(\large \frac {(x\,+\,2)(x\,–\,2)}{(x\,–\,3)(3x\,+\,2)}\)

= \(\large \frac {(x\,–\,1)(x\,+\,2)(x\,–\,2)}{(x\,–\,4)(x\,–\,3)²}\)

 

∴ \(\large \frac {3x²\,–\,x\,–\,2}{x²\,–\,7x\,+\,12}\) ÷ \(\large \frac {3x²\,–\,7x\,–\,6}{x²\,–\,4}\) = \(\large \frac {(x\,–\,1)(x\,+\,2)(x\,–\,2)}{(x\,–\,4)(x\,–\,3)²}\)

 

6. \(\large \frac {4x²\,–\,11x\,+\,6}{16x²\,–\,9}\)

Solution:

\(\large \frac {4x²\,–\,11x\,+\,6}{16x²\,–\,9}\)

= \(\large \frac {4x²\,–\,8x\,–\,3x\,+\,6}{(4x)²\,–\,(3)²}\)

= \(\large \frac {4x(x\,–\,2)\,–\,3(x\,–\,2)}{(4x\,–\,3)(4x\,–\,3)}\)

= \(\large \frac {(x\,–\,2)(4x\,–\,3)}{(4x\,–\,3)(4x\,–\,3)}\)

= \(\large \frac {x\,–\,2}{4x\,–\,3}\)

 

∴ \(\large \frac {4x²\,–\,11x\,+\,6}{16x²\,–\,9}\) = \(\large \frac {x\,–\,2}{4x\,–\,3}\)

 

7. \(\large \frac {a³\,–\,27}{5a²\,–\,16a\,+\,3}\) ÷ \(\large \frac {a²\,+\,3a\,+\,9}{25a²\,–\,1}\)

Solution:

\(\large \frac {a³\,–\,27}{5a²\,–\,16a\,+\,3}\) ÷ \(\large \frac {a²\,+\,3a\,+\,9}{25a²\,–\,1}\)

= \(\large \frac {a³\,–\,27}{5a²\,–\,16a\,+\,3}\) × \(\large \frac {25a²\,–\,1}{a²\,+\,3a\,+\,9}\

= \(\large \frac {(a\,–\,3)[(a)²\,+\,(a)(3)\,+\,(3)²]}{5a(a\,–\,3)\,–\,1(a\,–\,3)}\) × \(\large \frac {(5a\,+\,1)(5a\,–\,1)}{a²\,+\,3a\,+\,9}\

= \(\large \frac {(a\,–\,3)(a²\,+\,3a\,+\,9)}{(a\,–\,3)(5a\,–\1)}\) × \(\large \frac {(5a\,+\,1)(5a\,–\,1)}{a²\,+\,3a\,+\,9}\

= 5a + 1

 

∴ \(\large \frac {a³\,–\,27}{5a²\,–\,16a\,+\,3}\) ÷ \(\large \frac {a²\,+\,3a\,+\,9}{25a²\,–\,1}\) = 5a + 1

 

8. \(\large \frac {1\,–\,2x\,+\,x²}{1\,–\,x³}\) × \(\large \frac {1\,+\,x\,+\,x²}{1\,+\,x}\)

Solution:

\(\large \frac {1\,–\,2x\,+\,x²}{1\,–\,x³}\) × \(\large \frac {1\,+\,x\,+\,x²}{1\,+\,x}\)

= \(\large \frac {1\,–\,x\,–\,x\,+\,x²}{(1)³\,–\,(x)³}\) × \(\large \frac {1\,+\,x\,+\,x²}{1\,+\,x}\)

= \(\large \frac {1(1\,–\,x)\,–\,x(1\,–\,x)}{(1\,–\,x)[(1)²\,+\,(1)(x)\,+\,(x)²}\) × \(\large \frac {1\,+\,x\,+\,x²}{1\,+\,x}\)

= \(\large \frac {(1\,–\,x)(1\,–\,x)}{(1\,–\,x)(1\,+\,x\,+\,x²}\) × \(\large \frac {1\,+\,x\,+\,x²}{1\,+\,x}\)

= \(\large \frac {1\,–\,x}{1\,+\,x}\)

 

∴ \(\large \frac {1\,–\,2x\,+\,x²}{1\,–\,x³}\) × \(\large \frac {1\,+\,x\,+\,x²}{1\,+\,x}\) = \(\large \frac {1\,–\,x}{1\,+\,x}\)