Maharashtra Board Textbook Solutions for Standard Eight

Chapter 5 - Expansion Formulae

Practice set 5.1

1. Expand.

(1) (a + 2) (a – 1)
Solution:
We know that,
(x + a)(x + b) = x² + (a + b)x + ab

 

∴ (a + 2) (a – 1) = a² + (2 – 1) a + 2 × (– 1)
∴ (a + 2) (a – 1) = a² + a – 2

 

Ans: (a + 2) (a – 1) = a² + a – 2

(2) (m – 4) (m + 6) 

Solution: 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ (m – 4) (m + 6) = m² + (– 4 + 6) m + (– 4) × 6

∴ (m – 4) (m + 6) = m² + 2m – 24

 

Ans: (m – 4) (m + 6) = m² + 2m – 24

(3) (p + 8) (p – 3)

Solution: 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ (p + 8) (p – 3) = p² + (8 – 3) p + 8 × (– 3)

∴ (p + 8) (p – 3) = p² + 5p – 24

 

Ans: (p + 8) (p – 3) = p² + 5p – 24

(4) (13 + x) (13 – x) 

Solution: 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ (13 + x) (13 – x) = (13)² + (x – x) 13 + x × (– x)

∴ (13 + x) (13 – x) = 169 + 0 × 13 – x² 

∴ (13 + x) (13 – x) = 169 – x²

 

Ans: (13 + x) (13 – x) = 169 – x²

(5) (3x + 4y) (3x + 5y) 

Solution: 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ (3x + 4y) (3x + 5y) = (3x)² + (4y + 5y) 3x + 4y × 5y

∴ (3x + 4y) (3x + 5y) = 9x² + 9y × 3x + 20y²

∴ (3x + 4y) (3x + 5y) = 9x² + 27xy + 20y²

 

Ans: (3x + 4y) (3x + 5y) = 9x² + 27xy + 20y²

(6) (9x – 5t) (9x + 3t)

Solution: 

 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ (9x – 5t) (9x + 3t) = (9x)² + [(– 5t) + 3t] 9x + (– 5t) × 3t

∴ (9x – 5t) (9x + 3t) = 81x² + (– 2t) × 9x – 15t²

∴ (9x – 5t) (9x + 3t) = 81x² – 18xt – 15t²

 

Ans:  (9x – 5t) (9x + 3t) = 81x² – 18xt – 15t²

(7) \(\large(\)m + \(\large \frac {2}{3})\) \(\large(\)m – \(\large \frac {7}{3})\)

Solution: 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ \(\large(\)m + \(\large \frac {2}{3})\) \(\large(\)m – \(\large \frac {7}{3})\) = m² + \(\large (\frac {2}{3} – \frac {7}{3})\) m + \(\large (\frac {2}{3})\) × – \(\large \frac {2}{3}\)

∴ \(\large(\)m + \(\large \frac {2}{3})\) \(\large(\)m – \(\large \frac {7}{3})\) = m² – \(\large \frac {5}{3}\) m – \(\large \frac {14}{9}\)

 

Ans: \(\large(\)m + \(\large \frac {2}{3})\) \(\large(\)m – \(\large \frac {7}{3})\) = m² – \(\large \frac {5}{3}\) m – \(\large \frac {14}{9}\)

(8) \(\large(\)\(x\) + \(\large \frac {1}{x})\) \(\large(\)\(x\) – \(\large \frac {1}{x})\)

Solution: 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ \(\large(\)\(x\) + \(\large \frac {1}{x})\) \(\large(\)\(x\) – \(\large \frac {1}{x})\) = \(x\)² + \(\large (\frac {1}{x} – \frac {1}{x})\) \(x\) + \(\large (\frac {1}{x})\) × – \(\large \frac {1}{x}\)

∴ \(\large(\)\(x\) + \(\large \frac {1}{x})\) \(\large(\)\(x\) – \(\large \frac {1}{x})\) = \(x\)² – 0\(x\) – \(\large \frac {1}{x²}\)

∴ \(\large(\)\(x\) + \(\large \frac {1}{x})\) \(\large(\)\(x\) – \(\large \frac {1}{x})\) = \(x\)² – \(\large \frac {1}{x²}\)

 

Ans: \(\large(\)\(x\) + \(\large \frac {1}{x})\) \(\large(\)\(x\) – \(\large \frac {1}{x})\) = \(x\)² – \(\large \frac {1}{x²}\)

(9) \(\large (\frac {1}{x}\) + 4\(\large)\) \(\large (\frac {1}{y}\) – 4\(\large)\)

Solution: 

We know that,

(x + a)(x + b) = x² + (a + b)x + ab

 

∴ \(\large (\frac {1}{x}\) + 4\(\large)\) \(\large (\frac {1}{y}\) – 4\(\large)\) = \(\large (\frac {1}{y})\)² + (4 – 9) \(\large (\frac {1}{y})\) + 4 × (– 9)

∴ \(\large (\frac {1}{x}\) + 4\(\large)\) \(\large (\frac {1}{y}\) – 4\(\large)\) = \(\large \frac {1}{y²})\) + – 9 \(\large (\frac {5}{y})\) – 36

 

Ans: \(\large (\frac {1}{x}\) + 4\(\large)\) \(\large (\frac {1}{y}\) – 4\(\large)\) = \(\large \frac {1}{y²})\) + – 9 \(\large (\frac {5}{y})\) – 36

Practice set 5.2

1. Expand.

(1) (k + 4)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = k and b = 4

∴ (k + 4)³ = (k)³ + 3(k)² (4) + 3(k)(4)² + (4)³

∴ (k + 4)³ = k³ + 12k² + 3(k)(16) + 64

∴ (k + 4)³ = k³ + 12k² + 48k + 64

 

Ans: (k + 4)³ = k³ + 12k² + 48k + 64

(2) (7x + 8y)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = 7x and b = 8y

∴ (7x + 8y)³ = (7x)³ + 3(7x)² (8y) + 3(7x) (8y)² + (8y)³

∴ (7x + 8y)³ = 343x³ + 3(49x²)(8y) + 3(7x)(64y²) + 512y³

∴ (7x + 8y)³ = 343x³ + 1176x²y + 1344xy² + 512y³

 

Ans: (7x + 8y)³ = 343x³ + 1176x²y + 1344xy² + 512y³

(3) (7 + m)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = 7 and b = m

∴ (7 + m)³ = (7)³ + 3(7)²(m) + 3(7)(m)² + (m)³

∴ (7 + m)³ = 343 + 3(49)(m) + 3(7)(m²) + m³

∴ (7 + m)³ = 343 + 147m + 21m² + m³

 

Ans: (7 + m)³ = 343 + 147m + 21m² + m³

(4) (52)³

Solution:

(52)³ = (50 + 2)³

 

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = 50 and b = 2

∴ (52)³ = (50)³ + 3(50)² (2) + 3(50)(2)² + (2)³

∴ (52)³ = 125000 + 3(2500)(2) + 3(50)(4) + 8

∴ (52)³ = 125000 + 15000 + 600 + 8

∴ (52)³ = 140608

 

Ans: (52)³ = 140608

(5) (101)³

Solution:

(101)³ = (100 + 1)³

 

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = 100 and b = 1

(101)³ = (100)³ + 3(100)²(1) + 3(100)(1)² + (1)³

∴ (101)³ = 1000000 + 3(10000) + 3(100) (1) + 1

∴ (101)³ = 1000000 + 30000 + 300 + 1

∴ (101)³ = 1030301

 

Ans: (101)³ = 1030301

(6)\(\large(\)\(x\) + \(\large \frac {1}{x})\)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = \(x\) and b = \(\large \frac {1}{x}\)

∴ \(\large(\)\(x\) + \(\large \frac {1}{x})\)³ = (\(x\))³ + 3(\(x\))² \(\large (\frac {1}{x})\) + 3(\(x\))\(\large (\frac {1}{x})\)² + \(\large (\frac {1}{x})\)³

∴ \(\large(\)\(x\) + \(\large \frac {1}{x})\)³ = \(x\)³ + 3\(x\) + 3\(x\) \(\large (\frac {1}{x²})\) + \(\large (\frac {1}{x³})\)

∴ \(\large(\)\(x\) + \(\large \frac {1}{x})\)³ = \(x\)³ + 3\(x\) + \(\large \frac {3}{x}\) + \(\large (\frac {1}{x³})\)

 

Ans: \(\large(\)\(x\) + \(\large \frac {1}{x})\)³ = \(x\)³ + 3\(x\) + \(\large \frac {3}{x}\) + \(\large (\frac {1}{x³})\)

(7) \(\large(\)2m + \(\large \frac {1}{5})\)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = 2m and b = \(\large \frac {1}{5}\)

∴ \(\large(\)2m + \(\large \frac {1}{5})\)³ = (2m)³ + 3(2m)² \(\large (\frac {1}{5})\) + 3(2m)\(\large (\frac {1}{5})\)² + \(\large (\frac {1}{5})\)³

∴ \(\large(\)2m + \(\large \frac {1}{5})\)³ = 8m³ + 3(4m²) \(\large (\frac {1}{5})\) + 3(2m)\(\large (\frac {1}{25})\) + \(\large \frac {1}{125}\)³

∴ \(\large(\)2m + \(\large \frac {1}{5})\)³ = 8m³ + \(\large (\frac {12m²}{5})\) + \(\large (\frac {6m}{25})\) + \(\large \frac {1}{125}\)

 

Ans: \(\large(\)2m + \(\large \frac {1}{5})\)³ = 8m³ + \(\large (\frac {12m²}{5})\) + \(\large (\frac {6m}{25})\) + \(\large \frac {1}{125}\)

(8) \(\large (\frac {5x}{y}\) + \(\large \frac {y}{5x})\)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

 

Here a = \(\large \frac {5x}{y}\) and b = \(\large \frac {y}{5x}\)

∴ \(\large (\frac {5x}{y}\) + \(\large \frac {y}{5x})\)³ = \(\large (\frac {5x}{y})\)³ + 3 \(\large (\frac {5x}{y})\)² \(\large (\frac {y}{5x})\) + 3 \(\large (\frac {5x}{y})\) \(\large (\frac {y}{5x})\)² + \(\large (\frac {y}{5x})\)³

∴ \(\large (\frac {5x}{y}\) + \(\large \frac {y}{5x})\)³ = \(\large \frac {125x³}{y³}\) + 3 \(\large (\frac {25x²}{y²})\) \(\large (\frac {y}{5x})\) + 3 \(\large (\frac {5x}{y})\) \(\large (\frac {y²}{25x²})\) + \(\large \frac {y³}{125x³}\)

∴ \(\large (\frac {5x}{y}\) + \(\large \frac {y}{5x})\)³ = \(\large \frac {125x³}{y³}\) + 3 \(\large (\frac {5x}{y})\) + 3 \(\large (\frac {y}{5x})\) + \(\large \frac {y³}{125x³}\)

∴ \(\large (\frac {5x}{y}\) + \(\large \frac {y}{5x})\)³ = \(\large \frac {125x³}{y³}\) + \(\large \frac {15x}{y}\) + \(\large \frac {3y}{5x}\) + \(\large \frac {y³}{125x³}\)

 

Ans: \(\large (\frac {5x}{y}\) + \(\large \frac {y}{5x})\)³ = \(\large \frac {125x³}{y³}\) + \(\large \frac {15x}{y}\) + \(\large \frac {3y}{5x}\) + \(\large \frac {y³}{125x³}\)

Practice set 5.3

1. Expand.

(1) (2m – 5)³

Solution:

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = 2m and b = 5

∴ (2m – 5)³ = (2m)³ – 3(2m)² (5) + 3(2m) (5)² – (5)³

∴ (2m – 5)³ = 8m³ – 3(4m²)(5) + 3(2m)(25) – 125

∴ (2m – 5)³ = 8m³ – 60m² + 150m – 125

 

Ans: (2m – 5)³ = 8m³ – 60m² + 150m – 125

(2) (4 – p)³

Solution:

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = 4 and b = p

∴ (4 – p)³ = (4)³ – 3(4)²(p) + 3(4)(p)² – (p)³

∴ (4 – p)³ = 64 – 3(16)(p) + 3(4)(p²) – p³ 

∴ (4 – p)³ = 64 – 48p + 12p² – p³

 

Ans: (4 – p)³ = 64 – 48p + 12p² – p³

(3) (7x – 9y)³ 

Solution:

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = 7x and b = 9y

∴ (7x – 9y)³ = (7x)³ – 3(7x)² (9y) + 3 (7x)(9y)² – (9y)³

∴ (7x – 9y)³ = 343x³ – 3(49x²)(9y) + 3(7x)(81y²) – 729y³

∴ (7x – 9y)³ = 343x³ – 1323x²y + 1701xy² – 729y³

 

Ans: (7x – 9y)³ = 343x³ – 1323x²y + 1701xy² – 729y³

(4) (58)³

Solution:

(58)³ = (60 – 2)³

 

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = 60 and b = 2

∴ (58)³ = (60)³ – 3(60)²(2) + 3(60)(2)² – (2)³

∴ (58)³ = 216000 – 3(3600)(2) + 3(60)(4) – 8

∴ (58)³ = 216000 – 21600 + 720 – 8

∴ (58)³ = 195112

 

Ans: (58)³ = 195112

(5) (198)³ 

Solution:

(198)³ = (200 – 2)³

 

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = 200 and b = 2

∴ (198)³ = (200)³ – 3(200)²(2) + 3(200)(2)² – (2)³

∴ (198)³ = 8000000 – 3(40000)(2) + 3(200)(4) – 8

∴ (198)³ = 8000000 – 240000 + 2400 – 8

∴ (198)³ = 7762392

 

Ans: (198)³ = 7762392

(6) \(\large(\)2p – \(\large \frac {1}{2p})\)³

Solution:

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = 2p and b = \(\large \frac {1}{2p}\)

∴ \(\large(\)2p – \(\large \frac {1}{2p})\)³ = (2p)³ – 3(2p)² \(\large (\frac {1}{2p})\) + 3(2p)\(\large (\frac {1}{2p})\)² – \(\large (\frac {1}{2p})\)³

∴ \(\large(\)2p – \(\large \frac {1}{p})\)³ = 8p³ – 3(2p) + 3\(\large (\frac {1}{2p})\) – \(\large (\frac {1}{8p³})\)

∴ \(\large(\)2p – \(\large \frac {1}{p})\)³ = 8p³ – 6p + \(\large (\frac {3}{2p})\) – \(\large (\frac {1}{8p³})\)

 

Ans: \(\large(\)2p – \(\large \frac {1}{p})\)³ = 8p³ – 6p + \(\large (\frac {3}{2p})\) – \(\large (\frac {1}{8p³})\)

(7) \(\large(\)1 – \(\large \frac {1}{a})\)³

Solution:

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = 1 and b = \(\large \frac {1}{a}\)

∴ \(\large(\)1 – \(\large \frac {1}{a})\)³ = (1)³ – 3(1)² \(\large (\frac {1}{a})\) + 3(1)\(\large (\frac {1}{a})\)² – \(\large (\frac {1}{a})\)³

∴ \(\large(\)1 – \(\large \frac {1}{a})\)³ = 1 – 3\(\large (\frac {1}{a})\) + 3\(\large (\frac {1}{a²})\) – \(\large \frac {1}{a³}\)

∴ \(\large(\)1 – \(\large \frac {1}{a})\)³ = 1 – \(\large (\frac {3}{a})\) + \(\large (\frac {3}{a²})\) – \(\large \frac {1}{a³}\)

 

Ans: \(\large(\)1 – \(\large \frac {1}{a})\)³ = 1 – \(\large (\frac {3}{a})\) + \(\large (\frac {3}{a²})\) – \(\large \frac {1}{a³}\)

(8) \(\large (\frac {x}{3}\) – \(\large \frac {3}{x})\)³

Solution:

We know that,

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

Here, a = \(\large \frac {x}{3}\) and b = \(\large \frac {3}{x}\)

∴ \(\large (\frac {x}{3}\) – \(\large \frac {3}{x})\)³ = \(\large (\frac {x}{3})\)³ – 3 \(\large (\frac {x}{3}\)² \(\large (\frac {3}{x}\) + 3 \(\large (\frac {x}{3}\) \(\large (\frac {3}{x}\)² – \(\large (\frac {3}{x}\)³

∴ \(\large (\frac {x}{3}\) – \(\large \frac {3}{x})\)³ = \(\large \frac {x³}{27}\) – 3 \(\large (\frac {x²}{9}\) \(\large (\frac {3}{x}\) + 3 \(\large (\frac {x}{3}\) \(\large (\frac {9}{x²}\) – \(\large (\frac {27}{x³}\)

∴ \(\large (\frac {x}{3}\) – \(\large \frac {3}{x})\)³ = \(\large \frac {x³}{27}\) – x + \(\large \frac {9}{x}\) – \(\large (\frac {27}{x³}\)

 

Ans: \(\large (\frac {x}{3}\) – \(\large \frac {3}{x})\)³ = \(\large \frac {x³}{27}\) – x + \(\large \frac {9}{x}\) – \(\large (\frac {27}{x³}\)

2. Simplify.

(1) (2a + b)³ – (2a – b)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

(2a + b)³ – (2a – b)³ = [(2a)³ + 3(2a)²(b) + 3 (2a)(b)² + (b)³] – [(2a)³ – 3(2a)²(b) + 3 (2a)(b)² – (b)³]

(2a + b)³ – (2a – b)³ = 8a³ + 12a²b + 6ab² + b³ – 8a³ + 12a²b – 6ab² + b³

(2a + b)³ – (2a – b)³ = 8a³ – 8a³ + 12a²b + 12a²b + 6ab² – 6ab² + b³ + b³ 

(2a + b)³ – (2a – b)³ = 24a²b + 2b³

 

Ans: (2a + b)³ – (2a – b)³ = 24a²b + 2b³

(2) (3r – 2k)³ + (3r + 2k)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

(3r – 2k)³ + (3r + 2k)³ = [(3r)³ – 3(3r)²(2k) + 3(3r)(2k)² – (2k)³] + [(3r)³ + 3(3r)²(2k) + 3(3r)(2k)² + (2k)³]

(3r – 2k)³ + (3r + 2k)³ = (27r³ – 54r²k + 36rk² – 8k³) + (27r³ + 54r²k + 36rk² + 8k³)

(3r – 2k)³ + (3r + 2k)³ = 27r³ – 54r²k + 36rk² – 8k³ + 27r³ + 54r²k + 36rk² + 8k³

(3r – 2k)³ + (3r + 2k)³ = 27r³ + 27r³ – 54r²k + 54r²k + 36rk² + 36rk² – 8k³ + 8k³

(3r – 2k)³ + (3r + 2k)³ = 54r³ + 72rk²

 

Ans: (3r – 2k)³ + (3r + 2k)³ = 54r³ + 72rk²

(3) (4a – 3)³ – (4a + 3)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

(4a – 3)³ – (4a + 3)³ = [(4a)³ – 3(4a)² (3) + 3(4a)(3)² – (3)³] – [(4a)³ + 3(4a)²(3) + 3(4a)(3)² + (3)³] 

(4a – 3)³ – (4a + 3)³ = (64a³ – 144a² + 108a – 27) – (64a³ + 144a² + 108a + 27)

(4a – 3)³ – (4a + 3)³ = 64a³ – 144a² + 108a – 27 – 64a³ – 144a² – 108a – 27

(4a – 3)³ – (4a + 3)³ = 64a³ – 64a³ – 144a² – 144a² + 108a – 108a – 27 – 27

(4a – 3)³ – (4a + 3)³ = – 288a² – 54

 

Ans: (4a – 3)³ – (4a + 3)³ = – 288a² – 54

(4) (5x – 7y)³ + (5x + 7y)³

Solution:

We know that,

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a – b)³ = a³ – 3a²b + 3ab² – b³

 

∴ (5x – 7y)³ + (5x + 7y)³ = [(5x)³ – 3(5x)²(7y) + 3(5x)(7y)² – (7y)³] + [(5x)³ + 3(5x)² (7y) + 3(5x) (7y)² +(7y)³]

∴ (5x – 7y)³ + (5x + 7y)³ = (125x³ – 525x²y + 735xy² – 343y³) + (125x³ + 525x²y + 735xy² + 343y³)

∴ (5x – 7y)³ + (5x + 7y)³ = 125x³ – 525x²y + 735xy² – 343y³ + 125x³ + 525x²y + 735xy² + 343y³

∴ (5x – 7y)³ + (5x + 7y)³ = 125x³ + 125x³ – 525x²y + 525x²y + 735xy² + 735xy² – 343y³ + 343y³

∴ (5x – 7y)³ + (5x + 7y)³ = 250x³ + 1470xy²

 

Ans: (5x – 7y)³ + (5x + 7y)³ = 250x³ + 1470xy²

Practice set 5.4

1. Expand.

(1) (2p + q + 5)² 

Solution:

We know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

 

Here, a = 2p, b = q, c = 5,

(2p + q + 5)² = (2p)² + (q)² + (5)² + 2(2p) (q) + 2(q) (5) + 2(2p) (5)

(2p + q + 5)² = 4p² + q² + 25 + 4pq + 10q + 20p

 

Ans: (2p + q + 5)² = 4p² + q² + 25 + 4pq + 10q + 20p

(2) (m + 2n + 3r)²

Solution:

We know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

 

Here, a = m, b = 2n, c = 3r,

(m + 2n + 3r)² = (m)² + (2n)² + (3r)² + 2(m) (2n) + 2(2n) (3r) + 2(m) (3r)

(m + 2n + 3r)² =  m² + 4n² + 9r² + 4mn + 12nr + 6mr

 

Ans: (m + 2n + 3r)² =  m² + 4n² + 9r² + 4mn + 12nr + 6mr

(3) (3x + 4y – 5p)² 

Solution:

We know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

Here, a = 3x, b = 4y, c = – 5p,

(3x + 4y – 5p)² =  (3x)² + (4y)² + (– 5p)² + 2(3x) (4y) + 2(4y) (– 5p) + 2(3x) (– 5p)

(3x + 4y – 5p)² = 9x² + 16y² + 25p² + 24xy – 40py – 30px

 

Ans: (3x + 4y – 5p)² = 9x² + 16y² + 25p² + 24xy – 40py – 30px

(4) (7m – 3n – 4k)²

Solution:

We know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

 

Here, a = 7, b = – 3, c = – 4,

(7m – 3n – 4k)² = (7m)² + (– 3n)² + (– 4k)² + 2(7m) (– 3n) + 2 (– 3n) (– 4k) + 2 (7m) (– 4k)

(7m – 3n – 4k)² =  49m² + 9n² + 16k² – 42mn + 24nk – 56km

 

Ans: (7m – 3n – 4k)² = 49m² + 9n² + 16k² – 42mn + 24nk – 56km

2. Simplify.

(1) (x – 2y + 3)² + (x + 2y – 3)²

Solution:

We know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

 

Here, a = x, b = – 2y, c = 3,

∴ (x – 2y + 3)² + (x + 2y – 3)² = [(x)² + (– 2y)² + (3)² + 2 (x)(– 2y) + 2 (– 2y)(3) + 2 (x) (3)] + [(x)² + (2y)² + (– 3)² + 2 (x) (2y) + 2 (2y) (– 3) + 2 (x) (– 3)]

∴ (x – 2y + 3)² + (x + 2y – 3)² =  x² + 4y² + 9 – 4xy – 12y + 6x + x² + 4y² + 9 + 4xy – 12y – 6x

∴ (x – 2y + 3)² + (x + 2y – 3)² = x + x² + 4y² + 4y² + 9 + 9 – 4xy + 4xy – 12y – 12y + 6x – 6x

∴ (x – 2y + 3)² + (x + 2y – 3)² = 2x² + 8y² + 18 – 24y

 

Ans: (x – 2y + 3)² + (x + 2y – 3)² = 2x² + 8y² + 18 – 24y

(2) (3k – 4r – 2m)² – (3k + 4r – 2m)² 

Solution:

We know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

 

Here, a = 3k, b = – 4r, c = – 2m,

∴ (3k – 4r – 2m)² – (3k + 4r – 2m)² = [(3k)² + (– 4r)² + (– 2m)² + 2 (3k) (– 4r) + 2 (– 4r) (– 2m) + 2 (3k) (– 2m)] – [(3k)² + (4r)² + (– 2m)² + 2 (3k) (4r) + 2 (4r) (– 2m) + 2 (3k) (– 2m)]

∴ (3k – 4r – 2m)² – (3k + 4r – 2m)² = (9k² + 16r² + 4m² – 24kr + 16rm – 12km) – (9k² + 16r² + 4m² + 24kr – 16rm – 12km)

∴ (3k – 4r – 2m)² – (3k + 4r – 2m)² = 9k² + 16r² + 4m² – 24kr + 16rm – 12km – 9k² – 16r² – 4m² – 24kr + 16rm + 12km

∴ (3k – 4r – 2m)² – (3k + 4r – 2m)² = 32rm – 48kr

 

Ans: (3k – 4r – 2m)² – (3k + 4r – 2m)² = 32rm – 48kr

(3) (7a – 6b + 5c)² + (7a + 6b – 5c)²

Solution:

We know that,

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

 

Here, a = 7, b = – 3, c = – 4,

(7a – 6b + 5c)² + (7a + 6b – 5c)² =  [(7a)² + (– 6b)² + (5c)² + 2(7a) (– 6b) + 2(– 6b) (5c) + 2(7a) (5c)] + [(7a)² + (6b)² + (– 5c)² + 2 (7a) (6b) + 2 (6b) (– 5c) + 2 (7a) (– 5c)]

(7a – 6b + 5c)² + (7a + 6b – 5c)² = = 49a² + 36b² + 25c² – 84ab – 60bc + 70ac + 49a² + 36b² + 25c² + 84ab – 60bc – 70ac

(7a – 6b + 5c)² + (7a + 6b – 5c)² = = 49a² + 49a² + 36b² + 36b² + 25c² + 25c² – 84ab + 84ab – 60bc – 60bc + 70ac – 70ac

(7a – 6b + 5c)² + (7a + 6b – 5c)² = 98a² + 72b² + 50c² – 120bc

 

Ans: (7a – 6b + 5c)² + (7a + 6b – 5c)² = 98a² + 72b² + 50c² – 120bc