THEOREMS

Pythagoras Theorem

Theorem : 

In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the remaining two sides.

IMG 20230720 123915 Pythagoras Theorem

Given :

In ∆ABC,

∠ ABC = 90°

To prove :

AC² = AB² + BC²

Construction :

Draw perpendicular seg BD on side AC, such that A – D – C

Proof :

In right angled ∆ABC,

seg BD ⊥ hypotenuse AC …[By construction]

∴ ∆ABC ~ ∆ADB ~ ∆BDC …[By similarity of right angled triangles]

 

(i) ∆ABC ~ ∆ADB 

\(\large \frac {AB}{AD}\) = \(\large \frac {AC}{AB}\) …[Corresponding sides are proportional]

∴ AB² = AC × AD …(i)

 

(ii) ∆ABC ~ ∆BDC 

\(\large \frac {BC}{DC}\) = \(\large \frac {AC}{BC}\) …[Corresponding sides are proportional]

∴ BC² = AC × DC …(ii)

 

Adding equations (i) and (ii), we get,

AB² + BC² = AC × AD + AC × DC

∴ AB² + BC² = AC (AD + DC)

∴ AB² + BC² = AC (AC) …[A – D – C]

∴ AB² + BC² = AC²

i.e. AC² = AB² + BC²

 

Hence Proved.