THEOREMS

Apollonius Theorem

Theorem : 

In ∆ABC, if M is the midpoint of side BC, then AB² + AC² = 2AM² + 2BM²

IMG 20230720 142303 Apollonius Theorem

Given :

In ∆ABC,
M is the midpoint of side BC

To prove :

AB² + AC² = 2AM² + 2BM²

Construction :

Draw seg AD ⊥ seg BC

Proof :

In ∆ABD,

∠ABD = 90⁰

∴ AB² = AD² + BD² …[By Pythagoras theorem] (i)

 

In ∆ADC,

∠ADC = 90⁰

∴ AC² = AD² + DC² …[By Pythagoras theorem] (ii)

 

In ∆ADM,

∠ADM = 90⁰

∴ AM² = AD² + MD² …[By Pythagoras theorem] (iii)

 

Adding equations (i) and (ii), we get,

AB² + AC² = AD² + BD² + AD² + DC²

∴ AB² + AC² = 2AD² + BD² + DC²

∴ AB² + AC² = 2AD² + (BM + MD)² + (CM – MD)² …[From figure]

∴ AB² + AC² = 2AD² + (BM + MD)² + (BM – MD)² …[∵ BM = CM]

∴ AB² + AC² = 2AD² + BM² + MD² + 2BM × MD + BM² + MD² – 2BM × MD²

∴ AB² + AC² = 2AD² + BM² + BM²

∴ AB² + AC² = 2AD² + 2 BM² + 2 MD²

∴ AB² + AC² = (2AD² + 2 MD²) + 2 BM²

∴ AB² + AC² = 2(AD² + MD²) + 2 BM²

∴ AB² + AC² = 2AM² + 2 BM² …[From (iii)]

 

Hence Proved.