Maharashtra Board Textbook Solutions for Standard Eight

Chapter 8 – Quadrilateral : Constructions and Types

Practice set 8.1

1. Construct the following quadrilaterals of given measures.

(1) In □ MORE, l(MO) = 5.8 cm, l(OR) = 4.4 cm, m∠ M = 58°, m∠ O = 105°, m∠ R = 90°.

Ans:

IMG 20231009 013123 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 013111 Chapter 8 – Quadrilaterals

This is the required construction.

(2) Construct □ DEFG such that l(DE) = 4.5 cm, l(EF) = 6.5 cm, l(DG) = 5.5 cm, l(DF) = 7.2 cm, l(EG) = 7.8 cm.

Ans: 

IMG 20231009 013143 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 013136 Chapter 8 – Quadrilaterals

This is the required construction.

(3) In □ ABCD, l(AB) = 6.4 cm, l(BC) = 4.8 cm, m∠ A = 70°, m∠ B = 50°,  m∠ C = 140°.

Ans: 

IMG 20231009 013017 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 012959 Chapter 8 – Quadrilaterals

This is the required construction.

(4) Construct □ LMNO such that l(LM) = l(LO) = 6 cm, l(ON) = l(NM) = 4.5 cm, l(OM) = 7.5 cm.

Ans:

IMG 20231009 013033 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 013051 Chapter 8 – Quadrilaterals

This is the required construction.

Practice set 8.2

1. Draw a rectangle ABCD such that l(AB) = 6.0 cm and l(BC) = 4.5 cm.
Ans:

IMG 20231009 014530 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 014546 Chapter 8 – Quadrilaterals

This is the required construction.

2. Draw a square WXYZ with side 5.2 cm.
Ans:

IMG 20231009 014558 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 014609 Chapter 8 – Quadrilaterals

This is the required construction.

3. Draw a rhombus KLMN such that its side is 4 cm and m∠ K = 75°.
Ans:

IMG 20231009 014620 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 014633 Chapter 8 – Quadrilaterals

This is the required construction.

4. If diagonal of a rectangle is 26 cm and one side is 24 cm, find the other side.

Solution:

Let □ ABCD be the rectangle.

l(BC) = 24cm

l(AC) = 26cm

 

In ∆ABC,

m∠ABC = 90° …[Angle of a rectangle]

∴ By Pythagoras theorem, 

∴ [l(AC)]² = [l(AB)]2 + [l(BC)]²

∴ (26)² = [l(AB)]² + (24)²

∴(26)² – (24)² = [l(AB)]²

∴[l(AB)]² = 676 – 576

∴ [l(AB)]² = 100

∴ \(\sqrt{[l(AB)]²}\) = \(\sqrt{100}\) …[Taking square root on both sides]

∴ l(AB) = 10 cm

 

Ans: The length of the other side is 10 cm.

4. If diagonal of a rectangle is 26 cm and one side is 24 cm, find the other side.

Solution:

Let □ ABCD be the rectangle.

l(BC) = 24cm

l(AC) = 26cm

 

In ∆ABC,

m∠ABC = 90° …[Angle of a rectangle]

∴ By Pythagoras theorem 

∴ [l(AC)]² = [l(AB)]2 + [l(BC)]²

∴ (26)² = [l(AB)]² + (24)²

∴(26)² – (24)² = [l(AB)]²

∴[l(AB)]² = 676 – 576

∴ [l(AB)]² = 100

∴ \(\sqrt{[l(AB)]²}\) = \(\sqrt{100}\) …[Taking square root on both sides]

∴ l(AB) = 10 cm

 

Ans: The length of the other side is 10 cm.

5. Lengths of diagonals of a rhombus ABCD are 16 cm and 12 cm. Find the side and perimeter of the rhombus.

Solution:

In rhombus ABCD,

l(AC) = 16 cm

l(BD) = 12 cm.

 

Let the diagonals of rhombus ABCD intersect at point O.

l(AO) = \(\large \frac {1}{2}\) l(AC) …[Diagonals of a rhombus bisect each other]

∴ l(AO) = \(\large \frac {1}{2}\) × 16

∴ l(AO) = 8 cm

 

Also, l(DO) = \(\large \frac {1}{2}\) l(BD) …[Diagonals of a rhombus bisect each other]

∴ l(DO) = \(\large \frac {1}{2}\) × 12

∴ l(DO) = 6 cm

 

In ∆DOA,

m∠DOA = 90° ..[Diagonals of a rhombus are perpendicular to each other]

∴ By Pythagoras Theorem,

[l(AD)]² = [l(AO)]² + [l(DO)]²

[l(AD)]² = (8)² + (6)²

[l(AD)]² = 64 + 36

∴ [l(AD)]² = 100

∴ \(\sqrt{[l(AD)]²}\) = \(\sqrt{100}\) … [Taking square root on both sides]

∴ l(AD) = 10 cm

 

∴ l(AB) = l(BC) = l(CD) = l(AD) = 10 cm …[Sides of a rhombus are congruent]

 

Perimeter of rhombus ABCD

= l(AB) + l(BC) + l(CD) + l(AD)

= 10 + 10 + 10 + 10

= 40 cm

 

Ans: The side and perimeter of the rhombus are 10 cm and 40 cm respectively.

6. Find the length of diagonal of a square with side 8 cm

Solution:

Let □ XYWZ is the square of side 8cm.

Seg XW is a diagonal.

 

In ∆XYW,

m∠XYW = 90° … [Angle of a square]

∴ By Pythagoras Theorem,

[l(XW)]² = [l(XY)]² + [l(YW)]²

∴ [l(XW)]² = (8)² + (8)²

∴ [l(XW)]² = 64 + 64

∴ [l(XW)]² = 128

∴ \(\sqrt{[l(XW)]²}\) = \(\sqrt{128}\) …[Taking square root of both sides]

∴ l(XW) = \(\sqrt{64}\) × 2

∴ l(XW) = 8 \(\sqrt{2}\) cm

 

Ans: The length of the diagonal of the square is 8 \(\sqrt{2}\) cm.

7. Measure of one angle of a rhombus is 50°, find the measures of remaining three angles.

Solution:

Let □ ABCD be the rhombus.

m∠A = 50°

m∠C ≅ m∠A ….[Opposite angles of a rhombus are congruent]

∴ m∠C = 50°

Also, m∠D = m∠B …(i) ….[Opposite angles of a rhombus are congruent]

 

In □ ABCD,

m∠A + m∠B + m∠C + m∠D = 360° …[Sum of the measures of the angles of a quadrilateral is 360°]

∴ 50° + m∠B + 50° + m∠D = 360°

∴ m∠B + m∠D + 100° = 360°

∴ m∠B + m∠D = 360° – 100°

∴ m∠B + m∠B = 260° …[From (i)]

∴ 2m∠B = 260°

∴ m∠B = \(\large \frac {260}{2}\)

∴ m∠B = 130°

∴ m∠D ≅ m∠B = 130° 

 

Ans: The measures of the remaining angles of the rhombus are 130°, 50° and 130°.

Practice set 8.3

1. Measures of opposite angles of a parallelogram are (3x – 2)° and (50 – x)°. Find the measure of its each angle.

Solution:

Let □ PQRS be the parallelogram.

m∠Q = (3x – 2)°

m∠S = (50 – x)°

 

m∠Q ≅ m∠S …(i) [Opposite angles of a parallelogram are congruent]

∴ 3x – 2 = 50 – x

∴ 3x + x = 50 + 2

∴ 4x = 52

∴ x = \(\large \frac {52}{5}\)

∴ x = 13

 

Now, 

m∠Q = (3x – 2)°

∴ m∠Q = (3 × 13 – 2)° 

∴ m∠Q = (39 – 2)° 

∴ m∠Q = 37°

 

∴ m∠S ≅ m∠Q = 37° …[From(i)]

 

m∠P + m∠Q = 180°…[Adjacent angles of a parallelogram are supplementary]

∴ m∠P + 37° = 180°

∴ m∠P = 180° – 37° 

∴ m∠P = 143°

 

∴ m∠R ≅ m∠P = 143° …[Opposite angles of a parallelogram are congruent]

 

Ans: The measures of the angles of the parallelogram are 37°, 143°, 37° and 143°.

2. Referring the adjacent figure of a parallelogram, write the answers of questions given below.

IMG 20231009 015259 Chapter 8 – Quadrilaterals

(1) If l(WZ) = 4.5 cm then l(XY) = ?

(2) If l(YZ) = 8.2 cm then l(XW) = ?

(3) If l(OX) = 2.5 cm then l(OZ) = ?

(4) If l(WO) = 3.3 cm then l(WY) = ?

(5) If m∠WZY = 120° then m∠WXY = ? and m∠ XWZ = ?

Solution:

(i) l(WZ) = 4.5 cm …[Given]

l(XY) = l(WZ) …[Opposite sides of a parallelogram are congruent ]

∴ l(XY) = 4.5 cm

 

(ii) l(YZ) = 8.2 cm …[Given]

l(XW) = l(YZ) …[Opposite sides of a parallelogram are congruent]

∴ l(XW) = 8.2 cm …[Given]

 

(iii) l(OX) = 2.5 cm …[Given]

l(OZ) = l(OX) …[Diagonals of a parallelogram bisect each other]

∴ l(OZ) = 2.5 cm

 

(iv) l(WO) = 3.3 cm …[Given]

l(WO) = \(\large \frac {1}{2}\) l(WY) …[Diagonals of a parallelogram bisect each other]

∴ 3.3 = \(\large \frac {1}{2}\) l(WY)

∴ 3.3 × 2 = l(WY)

∴ l(WY) = 6.6 cm

 

(v) m∠WZY =120° …[Given]

m∠WXY = m∠WZY …[Opposite angles of a parallelogram are congruent]

∴ m∠WXY = 120° …(i)

 

m∠XWZ + m∠WXY = 180° …[Adjacent angles of a parallelogram are supplementary]

∴ m∠XWZ + 120° = 180° …[From (i)]

∴ m∠XWZ = 180°– 120°

∴ m∠XWZ = 60°

3. Construct a parallelogram ABCD such that l(BC) = 7 cm, m∠ABC = 40°, l(AB) = 3 cm.

Solution:

Opposite sides of a parallelogram are congruent.

∴ l(AB) ≅ l(CD) = 3 cm

l(BC) ≅ l(AD) = 7 cm

IMG 20231009 015455 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 020238 Chapter 8 – Quadrilaterals

This is the required construction.

4. Ratio of consecutive angles of a quadrilateral is 1 : 2 : 3 : 4. Find the measure of its each angle. Write, with reason, what type of a quadrilateral it is.

Solution:

Let □ PQRS be the quadrilateral.

Ratio of consecutive angles of a quadrilateral is 1 : 2 : 3 : 4.

 

Let the common multiple be x.

∴ m∠P = x°

m∠Q = 2x°

m∠R = 3x°

m∠S = 4x°

 

In □ PQRS,

m∠P + m∠Q + m∠R + m∠S = 360° …[Sum of the measures of the angles of a quadrilateral is 360°]

∴x + 2x + 3x + 4x = 360

∴10x = 360

∴ x = \(\large \frac {360}{10}\)

∴ x = 36

 

∴ m∠P = x = 36

m∠Q = 2x = 2 × 36 = 72

m∠R = 3x = 3 × 36 = 108

m∠S = 4x = 4 × 36 = 144

 

∴ The measures of the angles of the quadrilateral are 36°, 72°, 108°, 144°.

 

Now,

m∠P + m∠S = 36° + 144° = 180°

 

Since interior angles are supplementary,

∴ Side PQ || side SR

m∠P + m∠Q = 36° + 72° 

m∠P + m∠Q = 108° 180°

 

∴ Side PS is not parallel to side QR.

 

Since, one pair of opposite sides of the given quadrilateral is parallel.

∴ The given quadrilateral is a trapezium.

5. Construct □ BARC such that l(BA) = l(BC) = 4.2 cm, l(AC) = 6.0 cm, l(AR) = l(CR) = 5.6 cm

Ans:

IMG 20231009 015602 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 015619 Chapter 8 – Quadrilaterals

This is the required construction.

6. Construct □  PQRS, such that l(PQ) = 3.5 cm, l(QR) = 5.6 cm, l(RS) = 3.5 cm, m∠ Q = 110°, m∠ R = 70°. If it is given that □  PQRS is a parallelogram, which of the given information is unnecessary?

Solution:

The opposite sides of a parallelogram are congruent.

∴ Either l(PQ) or l(SR) is required.

 

To construct a parallelogram, lengths of adjacent sides and measure of one angle is required.

 

∴ Either l(PQ) and m∠Q or l(SR) and m∠R is the unnecessary information given in the question.

IMG 20231009 015705 Chapter 8 – Quadrilaterals

Rough Figure

IMG 20231009 015643 Chapter 8 – Quadrilaterals

This is the required construction.