BOARD QUESTION PAPER: MARCH 2022

Mathematics - II

Max. Marks: 40

Note	: i. iii. iv. v. v. vi. vii. vii. viii.	<i>All</i> questions are compulsory. Use of calculator is not allowed. The numbers to the right of the questions indicate full marks. In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit. For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer. Draw proper figures for answers wherever necessary. The marks of construction should be clear. Do not erase them. Diagram is essential for writing the proof of the theorem.
Q.1.	(A)	For each of the following sub-questions four alternative answers are given. Choose the correct alternative and write its alphabet: [4]
	1.	If $\triangle ABC \sim \triangle DEF$ and $\angle A = 48^\circ$, then $\angle D = $ (A) $\angle 48^\circ$ (B) $\boxed{83^\circ}$ (C) $\angle 49^\circ$ (D) $\boxed{132^\circ}$
	ii.	AP is a tangent at A drawn to the circle with center O from an external point P. OP = 12 cm and $\angle OPA = 30^\circ$, then the radius of a circle is
		(A) 12 cm (B) $6\sqrt{3}$ cm (C) 6 cm (D) $12\sqrt{3}$ cm
	iii.	Seg AB is parallel to X-axis and co-ordinates of the point A are $(1, 3)$, then the co-ordinates of the point B can be
	iv	(A) $(-3, 1)$ (B) $(5, 1)$ (C) $(3, 0)$ (D) $(-5, 3)$ The value of 2tan $45^{\circ} - 2\sin 30^{\circ}$ is
	17.	(A) 2 (B) 1 (C) $\frac{1}{2}$ (D) $\frac{3}{4}$
	(B) i.	Solve the following sub-questions: [4] In \triangle ABC, \angle ABC = 90°, \angle BAC = \angle BCA = 45°. A
		If $AC = 9\sqrt{2}$, then find the value of AB.
	ii.	Chord AB and chord CD of a circle with centre O are congruent. If $m(arc AB) = 120^{\circ}$, then find the $m(arc CD)$.
	iii.	Find the Y-co-ordinate of the centroid of a triangle whose vertices are $(4, -3)$, $(7, 5)$ and $(-2, 1)$.
	iv.	If $\sin\theta = \cos\theta$, then what will be the measure of angle θ ?
Q.2.	(A) i.	Complete the following activities and rewrite it (any two):D[4]In the above figure, seg AC and seg BD intersect each//
		other in point P. If $\frac{AP}{CP} = \frac{BP}{DP}$, then complete the
		following activity to prove $\triangle ABP \sim \triangle CDP$. Activity: In $\triangle APB$ and $\triangle CDP$ $\frac{AP}{CP} = \frac{BP}{DP}$ $\therefore \ \angle APB \equiv $ vertically opposite angles B
		\therefore $\sim \Delta CDP$ test of similarity.

Std. X : Mathematics Part - II

2

but
$$\angle$$
STQ = 58°

$$\therefore \quad \frac{1}{2} \left[m(\text{arc PR}) + m(\text{arc QS}) \right] = \boxed{\angle \dots}$$

...... (II) given from (I) and (II)

ii. Complete the following activity to find the co-ordinates of point P which divides seg AB in the ratio 3:1 where A(4, -3) and B(8, 5).

 \therefore By section formula,

$$x = \frac{mx_2 + nx_1}{m}, \quad y = \frac{1}{m+n}$$

$$\therefore \qquad x = \frac{3 \times 8 + 1 \times 4}{3 + 1}, \quad y = \frac{3 \times 5 + 1 \times (-3)}{3 + 1}$$

$$\therefore \qquad = \frac{1 + 4}{4} = \frac{1 - 3}{4}$$

$$\therefore \qquad x = 1 \qquad \therefore \qquad y = 1$$

(B) Solve the following sub-questions (any *two*):

- i. In $\triangle ABC$, seg XY || side AC. If 2AX = 3BX and XY = 9, then find the value of AC.
- ii. Prove that, "Opposite angles of cyclic quadrilateral are supplementary".
- iii. $\triangle ABC \sim \triangle PQR$. In $\triangle ABC$, AB = 5.4 cm, BC = 4.2 cm, AC = 6.0 cm, AB : PQ = 3 : 2, then construct $\triangle ABC$ and $\triangle PQR$

iv. Show that:
$$\frac{\tan A}{(1 + \tan^2 A)^2} + \frac{\cot A}{(1 + \cot^2 A)^2} = \sin A \times \cos A.$$

Q.4. Solve the following sub-questions (any two):

 i. □ABCD is a parallelogram. Point P is the midpoint of side CD. Seg BP intersects diagonal AC at point X, then prove that: 3AX = 2AC

С

ii.

In the above figure, seg AB and seg AD are tangent segments drawn to a circle with centre C from exterior point A, then prove that: $\angle A = \frac{1}{2} [m(\text{arc BYD}) - m(\text{arc BXD})]$

iii. Find the co-ordinates of centroid of a triangle if points D(-7, 6), E(8, 5) and F(2,-2) are the mid-points of the sides of that triangle.

Q.5. Solve the following sub-questions (any *one*):

- i. If a and b are natural numbers and a > b. If $(a^2 + b^2)$, $(a^2 b^2)$ and 2ab are the sides of the triangle, then prove that the triangle is right angled. Find out two Pythagorean triplets by taking suitable values of a and b.
- ii. Construct two concentric circles with centre O with radii 3 cm and 5 cm. Construct tangent to a smaller circle from any point A on the larger circle. Measure and write the length of tangent segment. Calculate the length of tangent segment using Pythagoras theorem.

[6]

[8]

[3]