

BOARD QUESTION PAPER: JULY 2022

Mathematics Part - II

Time: 2 Hours Max. Marks: 40

Note:

- i. *All* questions are compulsory.
- ii. Use of calculator is not allowed.
- iii. The numbers to the right of the questions indicate full marks.
- iv. In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
- v. For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer.
- vi. Draw proper figures for answers wherever necessary.
- vii. The marks of construction should be clear. Do not erase them.
- viii. Diagram is essential for writing the proof of the theorem.

Q.1. (A) Four alternative answers are given for every sub-question. Select the correct alternative and write the alphabet of that answer:

- i. From the following points _____ point lies to the right side of the origin on X-axis.
 - (A) (-2, 0)

(B) (0, 2)

(C) (2,3)

- (D) (2,0)
- ii. $\triangle PQR \sim \triangle STU$ and $A(\triangle PQR) : A(\triangle STU) = 64 : 81$, then what is the ratio of corresponding sides?
 - (A) 8:9

(B) 64:81

(C) 9:8

- (D) 16:27
- iii. In a right angled triangle; if the sum of the squares of sides making right angle is 169, then what is the length of hypotenuse?
 - (A) 15

(B) 13

(C) 5

- (D) 12
- iv. If $\tan \theta = \sqrt{3}$, then the value of θ is
 - (A) 60°

(B) 30°

(C) 90°

(D) 45°

(B) Solve the following sub-questions:

i. In the given figure, seg CB \perp seg AB, seg AD \perp seg AB. If BC = 4, AD = 8,

then find
$$\frac{A(\Delta ABC)}{A(\Delta ADB)}$$

- ii. Find the coordinates of the midpoint of the segment joining the points (22, 20) and (0, 16).
- iii. Two circles having radii 7 cm and 4 cm touch other internally. Find the distance between their centres.
- iv. In $\triangle ABC$, $\angle B = 90^{\circ}$, $\angle A = 30^{\circ}$, AC = 14, then find BC.

[4]

[4]

Complete the following activities and rewrite it (any two): Q.2. (A)

[4]

- i. In the above figure, $\angle PQR$ is inscribed in the semicircle PQR. Complete the following activity to find measure of $\angle PQR$.
 - **Activity:**

 $m(arc PQR) = 180^{\circ}$

...(measure of semicircle)

m(arc PXR) =٠.

 $\angle PQR = \frac{1}{2} m(arc \square)$ *:*. $=\frac{1}{2}\times 180^{\circ}$

- $\angle PQR = \lceil$ *:*.
- In $\triangle ABC$, $\angle B = 90^{\circ}$, $\angle C = \theta^{\circ}$ then ii. complete the activity to derive the trigonometric identity. **Activity:**

...(Pythagoras theorem)

 $\frac{AB^{2}}{AB^{2}} + \frac{BC^{2}}{AB^{2}} = \frac{AC^{2}}{AB^{2}}$

...(dividing by AB²)

 $1 + \frac{BC^2}{AB^2} = \frac{AC^2}{AB^2}$

But $\frac{\Box}{AB^2} = \cot^2\theta$ and $\frac{AC^2}{\Box} = \csc^2\theta$

$$\therefore 1 + \boxed{ } = \csc^2 \theta$$

In $\triangle PQR$, if PN = 12, NR = 8, PM = 15, MQ = 12, then complete the following activity to iii. justify whether seg NM is parallel to side RQ or not.

Activity:

In ΔPQR,

$$\frac{PN}{NR} = \frac{12}{\boxed{}} = \frac{3}{2}$$

...(i)

and
$$\frac{PM}{MQ} = \frac{15}{12} = \frac{4}{4}$$

...(ii)

$$\therefore \frac{PN}{NR} \neq \frac{PM}{MQ}$$

...[from (i) and (ii)]

seg NM is to side RQ.

[Note: The activity has been modified.]

[8]

Solve the following sub-questions (Any *four*): **(B)**

In the given figure, chord AC and chord DE intersect each other at point B. If $\angle ABE = 108^{\circ}$ and m(arc AE) = 95°, Then fine m(arc DC).

- ii. Find the distance between the points P(-1, 1) and Q(5, -7).
- Construct a tangent to a circle with centre P and radius 3.5 cm at any point M on it. iii.
- iv. Find the length of diagonal of rectangle having sides 11 cm and 60 cm.
- If $\sin \theta = \frac{7}{25}$, then find values of $\cos \theta$ and $\tan \theta$. v.

M

[3]

Q.3. (A) Complete the following activities and rewrite it (any one):

i. In the above figure

 \angle QPR = 90°, seg PM \perp seg QR and Q-M-R. PM = 10,

QM = 8. Complete the following activity to find the value of QR.

In $\triangle PQR$, $\angle QPR = 90^{\circ}$ and

 $seg~PM \perp seg~QR$

$$\therefore \frac{100}{8} = MR$$

Now
$$QR = QM + MR$$

....(:: Q-M-R)

....(Given)

ii. In the above figure, in $\triangle ABC$ seg XY || side AC, A-X-B, B-Y-C If 2AX = 3BX and XY = 9,

then complete the following activity to find value of AC.

$$2AX = 3BX$$

...(Given)

$$\therefore \frac{AX}{BX} = \boxed{\boxed{}}$$

$$\therefore \frac{AX+BX}{BX} = \frac{3+2}{A(\Delta PQR)}$$

...(Componendo)

$$\therefore \frac{AB}{BX} = \frac{5}{2}$$

$$\Delta ABC \sim \Delta BYX$$

...(test of similarity)

$$\therefore \frac{BA}{BX} = \frac{AC}{\Box}$$

$$\dots$$
(c.s.s.t)

$$\therefore \frac{BA}{BX} = \frac{AC}{\Box}$$

(B) Solve the following sub-questions (any two):

[6]

- i. Prove that $\sec \theta + \tan \theta = \frac{\cos \theta}{1 \sin \theta}$
- ii. Find the coordinates of centroid of the triangle whose vertices are (4, 7), (8, 4), (7, 11).
- iii. Prove that "Opposite angles of a cyclic quadrilateral are supplementary".
- iv. Draw a circle with centre O and radius 3.5 cm. take a point P at a distance 7.5 cm from the centre. Draw tangents to the circle from point P.

Q.4. Solve the following sub-questions (any two):

[8]

i. In ΔABC, point X is any point on side BC. seg XM || seg AB and seg XN || seg AC. Extend seg MN such that it intersects extended side CB in point T.

Then prove that $TX^2 = TB \times TC$.

Mathematics Part - II

- ii. Draw triangle ABC, right angle at B such that AB = 3 cm, BC = 4 cm. Now construct \triangle PBQ similar to \triangle ABC each of whose sides are $\frac{7}{4}$ times the corresponding sides of \triangle ABC.
- iii. In the given figure, points A, P, B, R, C, Q are on the circle. After joining the given points as shown in the figure it from hexagon, then prove that $\angle APB + \angle BRC = 360^{\circ} \angle AQC$.

Q.5. Solve the following sub-questions (Any one):

[3]

- i. \triangle ABC and \triangle PQR are equilateral triangles with altitudes $2\sqrt{3}$ and $4\sqrt{3}$ respectively, then:
 - a. Find the length of side AB and side PQ
 - b. Find $\frac{A(\Delta ABC)}{A(\Delta PQR)}$
 - c. Find the radio of perimeter of $\triangle ABC$ to the perimeter of $\triangle PQR$.
- ii. In a circle with centre O, PA and PB are tangents from an external point P. E is the point on the circle such that O-E-P. Tangent drawn at E intersects PA and PB in point C and D respectively. If PA = 10, then write the answers to the following questions:
 - a. Draw the suitable figure using given information.
 - b. Write the relation between seg PA and seg PB
 - c. Find the perimeter of ΔPCD .