

BOARD QUESTION PAPER: July 2019 Maths Part - II

Time: 2 Hours Max. Marks: 40

Note:

- i. *All* questions are compulsory.
- ii. Use of calculator is not allowed.
- iii. Figures to the right of questions indicate full marks.
- iv. Draw proper figures for answers wherever necessary.
- v. The marks of construction should be clear and distinct. Do not erase them.
- vi. While writing any proof, drawing relevant figure is necessary. Also the proof should be consistent with the figure.

1. (A) Solve the following questions (Any four):

[4]

- i. Point M is the mid-point of segment AB. If AB = 8.6 cm, then find AM.
- ii. Write the equations of x-axis and y-axis.

iii.

In the above figure, line $l \parallel$ line m and line n is a transversal. Using the given information find the value of x.

- iv. If $\sin \theta = \frac{1}{2}$, then find the value of θ .
- v. If the side of a cube is 5 cm, then find its volume.
- vi. In \triangle DEF, if \angle E = 90°, then find the value of \angle D + \angle F.

(B) Solve the following questions (Any two):

[4]

- i. Draw seg AB = 6.8 cm and draw perpendicular bisector of it.
- ii. If Δ ABC \sim Δ DEF, then write the corresponding congruent angles and also write the ratio of corresponding sides.
- iii. Perpendicular height of a cone is 12 cm and its slant height is 13 cm. Find the radius of the base of cone.

2. (A) Choose the correct alternative:

[4]

- i. In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure of \angle P?
 - (A) 30°
- (B) 60°
- (C) 90°
- (D) 45°
- ii. If \triangle ABC \sim \triangle PQR and 4A (\triangle ABC) = 25 A(\triangle PQR), then AB : PQ = ?
 - (A) 4:25
- (B) 2:5
- (C) 5:2
- (D) 25:4

Std. X: Maths (Part - II)

- If the points, A, B, C are non-collinear points, then how many circles can be drawn which iii. passes through points A, B and C?
 - (A) two
- (B) three
- (C) one
- infinite (D)

- iv. $\sin \theta \times \csc \theta = ?$
 - (A)
- (B)

- (C) 0
- (D) 1

Solve the following questions (Any two): **(B)**

[4]

- i. Construct a tangent to a circle with centre O and radius 3.5 cm at a point P on it.
- Find the slope of the line passing through the points A(4, 7) and B(2, 3). ii.
- If the length of an arc of sector of a circle is 20 cm and if radius is 7 cm, find the area of the iii. sector.
- Complete the following activities (Any two): 3. **(A)**

[4]

In the above figure, line AB \parallel line CD \parallel line EF, line l and line m are its transversals. If AC = 6, CE = 9. BD = 8, then complete the following activity to find DF.

Activity:

$$\therefore \frac{6}{9} = \frac{\Box}{DF}$$

ii.

A circle is inscribed in square ABCD of side 14 cm. Complete the following activity to find

Area of circle =
$$\pi r^2$$

$$=\frac{22}{7}\times7^2$$

$$=$$
 $\boxed{ cm^2}$

Area of shaded portion = Area of square ABCD – Area of circle

$$=$$
 cm²

iii. In the following figure, O is the centre of the circle. \angle ABC is inscribed in arc ABC and \angle ABC = 65°. Complete the following activity to find the measure of \angle AOC.

$$\angle$$
 ABC = $\frac{1}{2}$ m \square (Inscribed angle theorem)

$$\times$$
 2 = m(arc AXC)

$$\angle$$
 AOC = m(arc AXC) (Definition of measure of an arc)

i.

- (B) Solve the following questions (Any two):
 - Find the side and perimeter of a square whose diagonal is $13\sqrt{2}$ cm.
- ii. Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, -5), Q(4, 3) and R(11, -4)
- iii. If $\cos \theta = \frac{5}{13}$, then find $\sin \theta$.
- 4. Solve the following questions (Any three):
 - i. Verify that the points A(-2, 2), B(2, 2) and C(2, 7) are the vertices of right-angled triangle.

ii. Prove that:
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$

- iii. In \triangle ABC, seg AP is a median. If BC = 18, AB² + AC² = 260, then find the length of AP.
- iv. Δ ABC ~ Δ LMN. In Δ ABC, AB = 5.5 cm, BC = 6 cm, CA = 4.5 cm. If MN = 4.8 cm, then construct Δ ABC and Δ LMN.
- 5. Solve the following questions (Any one):

[4]

[9]

In the above figure, seg PA, seg QB and RC are perpendicular to seg AC. From the information given in the figure, prove that: $\frac{1}{x} + \frac{1}{z} = \frac{1}{y}$.

ii.

In the above figure, the circles with P, Q and R intersect at points B, C, D and E as shown. Lines CB and ED intersect in point M. Lines drawn from point M touch the circles at points A and F. Prove that MA = MF.

6. Solve the following questions (Any one):

[3]

i.

In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle. seg CE \perp seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of following steps:

- a. Draw ray CE. It intersects the circle at D.
- b. Show that CE = ED.
- c. Write the result using theorem of intersection of chords inside a circle.
- d. Using CE = ED, complete the proof.

ii.

In the above figure, a sphere is placed in a cylinder. It touches the top, bottom and the curved surface of the cylinder. If radius of the base of cylinder is 'r', write the answer of the following questions.

- a. What is the height of the cylinder in terms of r?
- b. What is the ratio of the curved surface area of the cylinder and the surface area of the sphere?
- c. What is the ratio of volumes of the cylinder and of the sphere?